期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Aluminum Toxicity:A Case Study on Tobacco(Nicotiana tabacum L.)
1
作者 munir ozturk Mert Metin +10 位作者 Volkan Altay Tomonori Kawano Alvina Gul Bengu Turkyilmaz Unal Dilek Unal Rouf Ahmad Bhat Moonisa Aslam Dervash Kristina Toderich Esra Koc Pedro Garcia Caparros Andleeb Shahzadi 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期165-192,共28页
Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments.Many plants are affected by the presence of aluminum at the whole plant level,at the organ level,and at the cellula... Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments.Many plants are affected by the presence of aluminum at the whole plant level,at the organ level,and at the cellular level.Tobacco as a cash crop(Nicotiana tabacum L.)is a widely cultivated plant worldwide and is also a good model organism for research.Although there are many articles on Al-phytotoxicity in the literature,reviews on a single species that are economically and scientifically important are limited.In this article,we not only provide the biology associated with tobacco Al-toxicity,but also some essential information regarding the effects of this metal on other plant species(even animals).This review provides information on aluminum localization and uptake process by different staining techniques,as well as the effects of its toxicity at different compartment levels and the physiological consequences derived from them.In addition,molecular studies in recent years have reported specific responses to Al toxicity,such as overexpression of various protective proteins.Besides,this review discusses data on various organelle-based responses,cell death,and other mechanisms,data on tobacco plants and other kingdoms relevant to these studies. 展开更多
关键词 ALUMINUM oxidative stress protective proteins ROS TOBACCO TOXICITY
下载PDF
Effect of Putrescine on Low-Temperature Acclimation in Chlamydomonas reinhardtii
2
作者 Muslum S.Inal Dilek Unal +1 位作者 Bengu Turkyilmaz Unal munir ozturk 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第3期583-598,共16页
Putrescine is reported to be necessary for cold acclimation under low-temperature stress.In this study,the effect of low-temperature on some physiological and biochemical parameters has been investigated using the gre... Putrescine is reported to be necessary for cold acclimation under low-temperature stress.In this study,the effect of low-temperature on some physiological and biochemical parameters has been investigated using the green algae Chlamydomonas reinhardtii.The lipid peroxidation rate,amount of Rubisco protein,activities of antioxidant enzymes and gene expression of polyamine biosynthesis(odc2,and spd1),heat shock proteins(hsp70c,hsp90a,and hsp90c),and PSII repair mechanisms(psba,rep27,and tba1)were determined to understand the low-temperature response.Exogenous putrescine application significantly increased Rubisco protein concentration and catalase enzyme activities under low-temperature stress.Moreover,real-time RT-PCR results and gene expression analysis showed that polyamine metabolism induced gene expression at low-temperatures in the first 24 h.In the same way,the gene expression of heat shock proteins(hsp70c,hsp90a,and hsp90c)decreased under low-temperature treatment for 72 h;however,application of putrescine enhanced the gene expression in the first 24 h.The results obtained indicated that molecular response in the first 24 h could be important for cold acclimation.The psba and tba1 expressions were reduced under low-temperatures depending on the exposure time.In contrast,the exogenous putrescine enhanced the expression level of the psba response to low-temperature at 24 and 72 h.The results obtained in this study indicate that putrescine could play a role in the PS II repair mechanisms under low-temperature stress. 展开更多
关键词 Chlamydomonas reinhardtii cold acclimation heat shock protein low-temperature stress PS II repair PUTRESCINE
下载PDF
Trace Elements in the Soil-Plant Systems of Copper Mine Areas-A Case Study From Murgul Copper Mine From the Black Sea Region of Turkey
3
作者 munir ozturk Volkan Altay +1 位作者 Mahir Kucuk Ibrahim Ertuğrul Yalçın 《Phyton-International Journal of Experimental Botany》 SCIE 2019年第3期223-238,共16页
This study presents a case study on the heavy metal analysis of soil and plant samples around the Murgul copper mine,one of the first and most important mining areas in Turkey.An attempt has been made to investigate t... This study presents a case study on the heavy metal analysis of soil and plant samples around the Murgul copper mine,one of the first and most important mining areas in Turkey.An attempt has been made to investigate the status of trace elements like Al^(3+),Fe^(2+),Cu^(2+),Zn^(2+),Pb^(2+),Ni^(2+),Co^(2+)and Cd^(2+)in soils and plants.The sampling localities were taken from 500 m,600 m,and 1000 m altitudes around the factory and at 1400 m in the forest zone.The aboveground parts and foliage ash of Silene compacta,Tussilago farfara,Smilax excelsa,Rhododendron ponticum,R.luteum,and herbal mix were analysed.The results of analysis have revealed the minimum and maximum concentrations measured in the plants as follows;aluminium(20-8985 mg kg^(-1)),cadmium(0.0-0.5 mg kg^(-1)),cobalt(0.0-5.5 mg kg^(-1)),copper(0.0-347.5 mg kg^(-1)),iron(25-9320 mg kg^(-1)),lead(2-51 mg kg^(-1)),nickel(1.5-16.5 mg kg^(-1)),and zinc(13.0-221.0 mg kg^(-1)).In the soil the concentrations of aluminium,cadmium,cobalt,copper,iron,lead,nickel,and zinc vary between 33-457,0.0-0.0,0.0-0.4,0.1-88.7,14-50,0.3-4.1,0.2-0.8,and 4.0-20.3 mg kg^(-1) respectively.These findings enlighten the fact that copper is generally toxic in the soils as well as plants.Silene compacta has been recorded as a high copper accumulator,behaving as a healthy plant on the polluted sites of the area alongside the Murgul creek(especially at 600 m).This study stresses the fact that it is imperative to assess and monitor the levels of heavy metals in the environment due to anthropogenic activities,including mining,for evaluation of human exposure and for sustainable environment. 展开更多
关键词 Copper mines environmental pollution heavy metals soil-plant interactions TOXICITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部