To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the ...To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.展开更多
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Aeronautical Science Foundation of China(No.2012ZB52026)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.