The importance of evaluating the leaf area in red tomato plants aims to determine the growth and development of crops established two production cycles, spring-summer and autumn-winter to compare the influence of temp...The importance of evaluating the leaf area in red tomato plants aims to determine the growth and development of crops established two production cycles, spring-summer and autumn-winter to compare the influence of temperature on the growth of leaf area. Repeated, weekly samples were taken by identifying the week and determining the growth and leaf area development using Markov chains, using an array of transition to describe and represent in a flowchart the finite number of physiological States. With the analysis in the steady state process and applying the equations of odds, we get that leaf area growth is established from the seventh week shown in the first cycle (C1) with the chance of 0.266, 0.264 and 0.263, in the last two weeks. It was observed an increase of 6% in the cycle autumn-winter cycle compared spring-summer.展开更多
The environmental impact on the planet leads to the search of new processes that are friendly with the environment and obtaining high quality products. In this sense, green chemistry is used in the generation of produ...The environmental impact on the planet leads to the search of new processes that are friendly with the environment and obtaining high quality products. In this sense, green chemistry is used in the generation of products through processes that do not affect the planet. In many of these processes and in general, the use of water has been depleted this resource of vital importance for the survival of living things. In Mexico, 77% of water is used in agriculture;14% in the public supply;5% in the thermoelectric plants and 4% in the industry. In research presented, hydroponics is essential in the process and is defined as a technique used to reduce excessive water consumption, by providing the necessary nutrients, in addition to preventing soil erosion by allowing the growth of plants without use of ground. The potassium polyacrylate is a super-absorbent polymer (Hydrogel) capable of absorbing water up to 500 times of its weight and has a life span of 10 years. When mixed with a substrate, the required nutrient solution potassium polyacrylate allows to lengthen the interval watering and thus reducing the consumption of water from plants. Morelos is the largest producer of ornamental plants in the country, due to its privileged climate and location. In the present work using the hydroponic methodology, we planted cuttings of Bethlehem New Guinea (Impatiens New Guinea) in a substrate made by 60% of coconut fiber, 20% tepojal, 20% ground sheet mixed with polymer of potassium (20 g per litre), 400 ml of Steiner nutrient solution in concentrations of 40%, 60%, 80% and 100%, varying the interval of 3-, 6-, 8- and 10-day watering. The variables considered are: concentration of chlorophyll, the plant height, leaf area, number of stems and weight dry total. The 12 principles of green chemistry applied to hydroponics using polyacrylate of potassium as part of the substrate in Bethlehem New Guinea (Impatiens New Guinea) to determine the analysis of life cycle (LCA), doing the balance of inputs and outputs of the system, and the stages of the LCA. Finally the SimaPro software was used to measure the environmental impact of the use of the polymer in hydroponics by varying the watering interval and the concentration of the Steiner solution, entering data for the concentration of Steiner, and the volume of water used. With the results obtained by measurement of weight dry total and concentration of Steiner solution and using the Software SimaPro, Steiner saw that the solution with the concentration of 60% using potassium polyacrylate as part of the hydroponic substrate in Bethlehem New Guinea and in the range of 10 days to water generated less environmental impact. On the other hand, in the same figure, it is determined that the Steiner solutions with concentrations of 80 and 100% generate a bigger environmental impact, due to the saturation of the solutions.展开更多
Analysis of agricultural production systems of hydroponic tomato in Morelos state of Mexico, through a systematic approach, called systems development of life cycle (SDLC) was performed by comparing this with the me...Analysis of agricultural production systems of hydroponic tomato in Morelos state of Mexico, through a systematic approach, called systems development of life cycle (SDLC) was performed by comparing this with the methodology known as life cycle assessment (LCA). This permits to analyze the differences in approaches of all these methodologies to propose improvements in the current system, which can allow an improved assessment of the environmental quality of agricultural products, which often is subject to confusion. That due to measurement parameters are not generally accepted by society, producers and consumers, may ensure that the process is fully sustainable and is considered quite as a green technology processes towards an ecological benefit and therefore for the humanity.展开更多
The tomato is one of the horticultural crops of the greatest economic value;for this reason, flexibility of management is usable. The population density in a crop of vegetables is determined by the distance between th...The tomato is one of the horticultural crops of the greatest economic value;for this reason, flexibility of management is usable. The population density in a crop of vegetables is determined by the distance between the plants and so it is necessary to choose the number of plants per square meter since the saturation of plants will lead to competition between sunlight, nutrients and weed. The objective of this work is to make the appropriate investigation for the use of the model proposed in order to describe the growth of tomato in greenhouse to high density of two plants per container to two bunches per plant, resulting in eight plants per square meter to grow, by means of a simulator of growth by computer. Of this work, it is concluded that it is possible to use the model to describe the growth of plants, and in the near future it will be possible to develop a simulator by computer of the growth of these crops in order to improve their quality and increase their production.展开更多
文摘The importance of evaluating the leaf area in red tomato plants aims to determine the growth and development of crops established two production cycles, spring-summer and autumn-winter to compare the influence of temperature on the growth of leaf area. Repeated, weekly samples were taken by identifying the week and determining the growth and leaf area development using Markov chains, using an array of transition to describe and represent in a flowchart the finite number of physiological States. With the analysis in the steady state process and applying the equations of odds, we get that leaf area growth is established from the seventh week shown in the first cycle (C1) with the chance of 0.266, 0.264 and 0.263, in the last two weeks. It was observed an increase of 6% in the cycle autumn-winter cycle compared spring-summer.
文摘The environmental impact on the planet leads to the search of new processes that are friendly with the environment and obtaining high quality products. In this sense, green chemistry is used in the generation of products through processes that do not affect the planet. In many of these processes and in general, the use of water has been depleted this resource of vital importance for the survival of living things. In Mexico, 77% of water is used in agriculture;14% in the public supply;5% in the thermoelectric plants and 4% in the industry. In research presented, hydroponics is essential in the process and is defined as a technique used to reduce excessive water consumption, by providing the necessary nutrients, in addition to preventing soil erosion by allowing the growth of plants without use of ground. The potassium polyacrylate is a super-absorbent polymer (Hydrogel) capable of absorbing water up to 500 times of its weight and has a life span of 10 years. When mixed with a substrate, the required nutrient solution potassium polyacrylate allows to lengthen the interval watering and thus reducing the consumption of water from plants. Morelos is the largest producer of ornamental plants in the country, due to its privileged climate and location. In the present work using the hydroponic methodology, we planted cuttings of Bethlehem New Guinea (Impatiens New Guinea) in a substrate made by 60% of coconut fiber, 20% tepojal, 20% ground sheet mixed with polymer of potassium (20 g per litre), 400 ml of Steiner nutrient solution in concentrations of 40%, 60%, 80% and 100%, varying the interval of 3-, 6-, 8- and 10-day watering. The variables considered are: concentration of chlorophyll, the plant height, leaf area, number of stems and weight dry total. The 12 principles of green chemistry applied to hydroponics using polyacrylate of potassium as part of the substrate in Bethlehem New Guinea (Impatiens New Guinea) to determine the analysis of life cycle (LCA), doing the balance of inputs and outputs of the system, and the stages of the LCA. Finally the SimaPro software was used to measure the environmental impact of the use of the polymer in hydroponics by varying the watering interval and the concentration of the Steiner solution, entering data for the concentration of Steiner, and the volume of water used. With the results obtained by measurement of weight dry total and concentration of Steiner solution and using the Software SimaPro, Steiner saw that the solution with the concentration of 60% using potassium polyacrylate as part of the hydroponic substrate in Bethlehem New Guinea and in the range of 10 days to water generated less environmental impact. On the other hand, in the same figure, it is determined that the Steiner solutions with concentrations of 80 and 100% generate a bigger environmental impact, due to the saturation of the solutions.
文摘Analysis of agricultural production systems of hydroponic tomato in Morelos state of Mexico, through a systematic approach, called systems development of life cycle (SDLC) was performed by comparing this with the methodology known as life cycle assessment (LCA). This permits to analyze the differences in approaches of all these methodologies to propose improvements in the current system, which can allow an improved assessment of the environmental quality of agricultural products, which often is subject to confusion. That due to measurement parameters are not generally accepted by society, producers and consumers, may ensure that the process is fully sustainable and is considered quite as a green technology processes towards an ecological benefit and therefore for the humanity.
文摘The tomato is one of the horticultural crops of the greatest economic value;for this reason, flexibility of management is usable. The population density in a crop of vegetables is determined by the distance between the plants and so it is necessary to choose the number of plants per square meter since the saturation of plants will lead to competition between sunlight, nutrients and weed. The objective of this work is to make the appropriate investigation for the use of the model proposed in order to describe the growth of tomato in greenhouse to high density of two plants per container to two bunches per plant, resulting in eight plants per square meter to grow, by means of a simulator of growth by computer. Of this work, it is concluded that it is possible to use the model to describe the growth of plants, and in the near future it will be possible to develop a simulator by computer of the growth of these crops in order to improve their quality and increase their production.