Dust emissions during storage of non-moving bulk materials are studied with a numerical method.The model relies on a contact-model-free Discrete Element Method(DEM)to model the bulk particle-fluid interaction and the ...Dust emissions during storage of non-moving bulk materials are studied with a numerical method.The model relies on a contact-model-free Discrete Element Method(DEM)to model the bulk particle-fluid interaction and the dust removal coupled with Computational Fluid Dynamics(CFD)to model the gas and the dust phase in a multiphase framework.Here,two storage scenarios are considered:a flown through packed bed and a flown over stockpile.For the first,the performed simulations reveal that the dust discharge can be correlated with the passing fluid pressure drop.For the second,a parameter study of factors influencing the dust emissions is performed.The parameters discussed are the stockpile size,the gas velocity,the slope angle,the particle diameter and the shape of the stockpile,taking into account conical and truncated conical stockpiles.Dust release correlations are obtained for both scenarios,which reflect very well the obtained numerical results.展开更多
基金The research projects IGF 19411 N and IGF 20974 N of the research association Forschungs-Gesellschaft Verfahrens-Technik e.V.(GVT)are supported by the Federal Ministry of Economic Affairs and Energy through the German Federation of Industrial Research Associations(AiF)as part of a program for promoting industrial community research(IGF)on the basis of a decision by the German Bundestag.
文摘Dust emissions during storage of non-moving bulk materials are studied with a numerical method.The model relies on a contact-model-free Discrete Element Method(DEM)to model the bulk particle-fluid interaction and the dust removal coupled with Computational Fluid Dynamics(CFD)to model the gas and the dust phase in a multiphase framework.Here,two storage scenarios are considered:a flown through packed bed and a flown over stockpile.For the first,the performed simulations reveal that the dust discharge can be correlated with the passing fluid pressure drop.For the second,a parameter study of factors influencing the dust emissions is performed.The parameters discussed are the stockpile size,the gas velocity,the slope angle,the particle diameter and the shape of the stockpile,taking into account conical and truncated conical stockpiles.Dust release correlations are obtained for both scenarios,which reflect very well the obtained numerical results.