For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will br...For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.展开更多
It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of ...It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.展开更多
基金the Deanship of Scientific Research at King Saud University through research group number(RG-1440-048)。
文摘For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.
基金supported by National Key Research and Development Program of China(2019YFC0605300)the National Natural Science Foundation of China(61873299,61902022,61972028)+2 种基金Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(BK21BF002)Macao Science and Technology Development Fund under Macao Funding Scheme for Key R&D Projects(0025/2019/AKP)Macao Science and Technology Development Fund(0015/2020/AMJ)。
文摘It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.