Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has gi...Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .展开更多
文摘Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .