期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparing the reinforcement capacity of welded steel mesh and a thin spray-on liner using large scale laboratory tests 被引量:7
1
作者 Zhenjun Shan Porter Ian +1 位作者 nemcik jan Baafi Ernest 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期373-377,共5页
Steel mesh is used as a passive skin confinement medium to supplement the active support provided by rock bolts for roof and rib control in underground coal mines. Thin spray-on liners(TSL) are believed to have the po... Steel mesh is used as a passive skin confinement medium to supplement the active support provided by rock bolts for roof and rib control in underground coal mines. Thin spray-on liners(TSL) are believed to have the potential to take the place of steel mesh as the skin confinement medium in underground mines.To confirm this belief, large scale laboratory experiments were conducted to compare the behaviour of welded steel mesh and a TSL, when used in conjunction with rock bolts, in reinforcing strata with weak bedding planes and strata prone to guttering, two common rock conditions which exist in coal mines. It was found that while the peak load taken by the simulated rock mass with weak bedding planes acting as the control sample(no skin confinement) was 2494 kN, the corresponding value of the sample with 5 mm thick TSL reinforcement reached 2856 kN. The peak load of the steel mesh reinforced sample was only2321 kN, but this was attributed to the fact that one of the rock bolts broke during the test. The TSL reinforced sample had a similar post-yield behaviour as the steel mesh reinforced one. The results of the large scale guttering test indicated that a TSL is better than steel mesh in restricting rock movement and thus inhibiting the formation of gutters in the roof. 展开更多
关键词 Steel mesh Thin spray-on liners Large scale laboratory experiments Strata with weak bedding planes Strata prone to guttering
下载PDF
A new fracture model for the prediction of longwall caving characteristics 被引量:1
2
作者 Venticinque Gaetano nemcik jan Ren Ting 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期369-372,共4页
A new numerical model is presented to simulate fracture initiation and propagation in geological structures. This model is based on the recent amalgamation of established failure and fracture mechanics theory, which h... A new numerical model is presented to simulate fracture initiation and propagation in geological structures. This model is based on the recent amalgamation of established failure and fracture mechanics theory, which has been implemented to the finite difference FLAC code as a constitutive FISH userdefined-model. Validation of the model has been studied on the basis of comparing the transitional failure modes in rock. It is shown that the model is capable of accurately simulating fracture distributions over entire brittle to ductile rock phases. The application of the model during longwall retreat simulation highlighted several caving characteristics relevant to varying geological condition. The distribution and behaviour of modelled fractures were both realistic and shown to provide an enhanced post failure analysis to geological structures in FLAC. Moreover, the model introduces new potential insight towards the failure analysis of more complicated problems. This is best suited towards improving safety and efficiency in mines through the prediction of various key fractures and caving characteristics of geological structures. 展开更多
关键词 Numerical model ing Longwal mining Fracture propagation Caving characteristic Mine safety
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部