Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs gener...A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.展开更多
Recent experimental progresses regarding broadband laser-plasma instabilities(LPIs)show that a 0.6%laser bandwidth can reduce backscatters of the stimulated Brillouin scattering(SBS)and the stimulated Raman scattering...Recent experimental progresses regarding broadband laser-plasma instabilities(LPIs)show that a 0.6%laser bandwidth can reduce backscatters of the stimulated Brillouin scattering(SBS)and the stimulated Raman scattering(SRS)at normal incidence[Phys.Rev.Lett.132035102(2024)].In this paper,we present a further discussion of the spectral distributions of the scatters developed by broadband LPIs,in addition to a brief validation of the effectiveness of bandwidth on LPIs mitigation at oblique incidence.SBS backscatter has a small redshift in the broadband case contrary to the blueshift with narrowband laser,which may be explained by the self-cross beam energy transfer between the various frequency components within the bandwidth.SRS backscatter spectrum presents a peak at a longer wavelength in the broadband case compared to the short one in the narrowband case,which is possibly attributed to the mitigation effect of bandwidth on filaments at underdense plasmas.The three-halves harmonic emission(3ω/2)has a one-peak spectral distribution under the broadband condition,which is different from the two-peak distribution under the narrowband condition,and may be related to the spectral mixing of different frequency components within the bandwidth if the main sources of the two are both two-plasmon decays.展开更多
To select maternal parents with high fertility and high combining ability during cross breeding of Populus tomentosa Carr., the ploidy level of 75 female clones was determined using flow cytometry. In addition, geneti...To select maternal parents with high fertility and high combining ability during cross breeding of Populus tomentosa Carr., the ploidy level of 75 female clones was determined using flow cytometry. In addition, genetic variations and phenotypic correlations of seed traits and early growth traits, as well as the general combining ability(GCA) for seedling height(SH) and basal diameter(BD) of all diploid half-sib families were examined. A total of 26 natural triploid clones were identified. For all diploid families, family effects were significant for inflorescence length(IL), thousand kernel weight(TKW), seedling emergence rate(SER), and for SH and BD. There was a positive correlation between TKW and other traits,excluding IL. The seed-bearing coefficient(NS 9 SER)ranged from zero to 32.4%. Clones 3-10-2, 2-8, 3119,3206, and 3-10-1 had the best performance of the GCA for SH and BD. Based on the fertility and GCA for SH and BD, clone 3-10-2 and clone 3119 could be used as female parents for controlled cross-breeding of P. tomentosa.展开更多
目的为解析党参NBS-LRR(Nucleotide-binding site and leucine-rich repeat)抗病基因家族,探究党参抗根腐病机制,从而解决党参根腐病害难题,促进党参育种及产业发展。方法基于党参响应根腐病病原菌的转录组数据,通过运用生物信息学方法...目的为解析党参NBS-LRR(Nucleotide-binding site and leucine-rich repeat)抗病基因家族,探究党参抗根腐病机制,从而解决党参根腐病害难题,促进党参育种及产业发展。方法基于党参响应根腐病病原菌的转录组数据,通过运用生物信息学方法对党参NBS-LRR家族基因进行理化性质、基因结构、系统发育、表达模式及互作网络分析。结果成功鉴定到88个党参NBS-LRR家族基因,包括N、NL、CN、CNL、TN、TNL、PN共7种类型,分别有50、14、1、14、4、3、2个基因。结果表明,党参CNL及TNL类基因结构比较保守;党参CNL亚家族基因在进化过程中发生扩增;党参NBS-LRR家族基因在尖孢镰刀菌(Fusarium oxysporum)侵染条件下存在时间表达模式差异,且侵染前期(6-24 h)高表达的基因DN64786c1g6、DN64786c1g5、DN48234c0g2、DN54844c1g2、DN59747c0g3、DN56071c1g8、DN64591c1g1、DN48464c1g1、DN59886c0g1在调控党参抗病过程中发挥重要作用。其中党参的抗病蛋白DN54844c1g2可能与GLR家族互作,进而通过调节Ca2+内流参与免疫调控;DN64786c1g5可能与CYTC-1和CYTC-2互作,进而通过参与氧化还原反应参与党参响应根腐病过程;DN59747c0g3可能与MPK3互作,进而通过参与MAP信号级联、磷酸化WRKY转录因子以及参与超敏反应(HR),在党参响应根腐病过程中发挥重要作用。结论党参NBSLRR家族基因的鉴定及表达分析对于探究党参抗根腐病机制、发掘基因功能具有重要意义。展开更多
2018年6月,安徽某鹅场接种过小鹅瘟蛋黄抗体的2批雏鹅发生小鹅瘟,再次用小鹅瘟蛋黄抗体产品进行紧急接种,有一定的控制效果,但仍有雏鹅死亡。为分析其原因,采集了8只9-12日龄病死鹅的肝脏和脾脏,用PCR扩增检测水禽细小病毒的VP3基因,选...2018年6月,安徽某鹅场接种过小鹅瘟蛋黄抗体的2批雏鹅发生小鹅瘟,再次用小鹅瘟蛋黄抗体产品进行紧急接种,有一定的控制效果,但仍有雏鹅死亡。为分析其原因,采集了8只9-12日龄病死鹅的肝脏和脾脏,用PCR扩增检测水禽细小病毒的VP3基因,选8份阳性样品测定了鹅细小病毒(GPV)VP1部分序列并进行了序列分析。结果显示,16份组织样品均为阳性。在443 nt VP1区,所测8株病毒之间的序列同源性为100%,与GPV亚洲强毒分支之间的序列同源性为99%。随后,用琼脂扩散沉淀试验分析了2株待检毒株与GPV参考毒株的抗原相关性,并测定了2种小鹅瘟蛋黄抗体产品的效价。结果显示,待检毒株与参考毒株具有相同的沉淀抗原,2种小鹅瘟蛋黄抗体产品的效价分别为1∶2和1∶16。表明免疫雏鹅仍发生小鹅瘟的原因并非源自GPV变异,而是与某些蛋黄抗体产品的抗体效价较低有关。展开更多
The distribution and sources of EMPs produced at Shenguang-Ⅱ(SG-Ⅱ)series laser facilities are systematically investigated.The results indicate that the EMP amplitudes in the SG-Ⅱps PW laser are very strong,one orde...The distribution and sources of EMPs produced at Shenguang-Ⅱ(SG-Ⅱ)series laser facilities are systematically investigated.The results indicate that the EMP amplitudes in the SG-Ⅱps PW laser are very strong,one order higher than those from the SG-Ⅱlaser facility.EMPs outside the target chamber decrease exponentially with the distance from the measuring points to the target chamber center at the two laser facilities.Moreover,EMPs can be remarkably reduced when the picosecond laser together with the nanosecond laser is incident to targets compared to the SG-Ⅱps PW laser alone.The resulting conclusions are expected to offer experimental supports for further effective EMPs shielding design and achievement in high-power laser facilities.展开更多
Cellular fibronectin (cFn) is a type of bioactive non-collagen glycoprotein regarded as the main substance used to maintain periodontal attachment. The content of cFn in some specific sites can reflect the progress ...Cellular fibronectin (cFn) is a type of bioactive non-collagen glycoprotein regarded as the main substance used to maintain periodontal attachment. The content of cFn in some specific sites can reflect the progress of periodontitis or peri-implantitis. This study aims to evaluate the expression of cFn messenger RNA (mRNA) in tissues of adult periodontitis and peri-implantitis by real-time fluorescent quantitative polymerase chain reaction (PCR) and to determine its clinical significance. A total of 30 patients were divided into three groups of 10: healthy, adult periodontitis and peri-implantitis. Periodontal tissue biopsies (1 mmx I mmx I mm) from each patient were frozen in liquid nitrogen. Total RNA was extracted from these tissues, and the content, purity and integrity were detected. Specific primers were designed according to the sequence, and the mRNA expression levels of cellular fibronectin were detected by real-time PCR. The purity and integrity of the extracted total RNA were both high, and the specificity of amplified genes was very high with no other pollution. The mRNA expression of cFn in the adult periodontitis group (1.526+0.441) was lower than that in the healthy group (3.253+0.736). However, the mRNA expression of cFn in the peri-implantitis group (3.965+0.537) was significantly higher than that in the healthy group. The difference revealed that although both processes were destructive inflammatory reactions in the periodontium, the pathomechanisms were different and the variation started from the transcription level of the cFn gene.展开更多
This research was aimed at the defects in traditional artificial spraying control method and the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle and lat...This research was aimed at the defects in traditional artificial spraying control method and the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle and late stage of sugarcane high stalk crops.The aerial pesticide application technology for sugarcane main diseases and pests was systematically developed and demonstrated from the aspects of aircraft type choice,selection of special pesticides and auxiliaries,integration of pesticides and equipment,field operation,technical specifications,and large-scale application organization mode.The UAV model and flight technical parameters suitable for the sugarcane planting area in low-latitude plateau were analyzed,and the optimal agent formulation combination and application technology of the UAV flight control were screened out,and the UAV flight control was applied to the major sugarcane pests and diseases control in the low-latitude plateau in large scale(UAV flight control was popularized and applied to 15 527 hm 2 in 2018).The research results provided mature whole-process technical support for the normalization of the application of the UVA flight control of major sugarcane pests and diseases.The UAV control technology for major sugarcane pests and diseases had the advantages of ultra-low pesticides applying dosage and high operating efficiency,and could effectively solve the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle late growth stage of high stalk crops.This technology successfully opened up a simple,efficient and new way for the effective control of major sugarcane pests and diseases,and practically accelerated the process of integrated control and prevention of sugarcane pests and diseases.In addition,this technology had an extremely significant effect on reducing the loss of sugarcane farmers and enterprises caused by the epidemic and outbreak of sugarcane pests and diseases,increasing sugarcane yield and sugar content.At the same time,this technology played an important role in realizing the whole-process precise control of sugarcane pests and diseases,improving the quality and increasing the efficiency of sugarcane,and guaranteeing the national sugar safety.展开更多
Objective:Bushen Chengyun granule(BCG)is an empirical treatment for female infertility(FI)caused by low endometrial receptivity(LER)involving a poorly understood mechanism.In this study,network pharmacology was used t...Objective:Bushen Chengyun granule(BCG)is an empirical treatment for female infertility(FI)caused by low endometrial receptivity(LER)involving a poorly understood mechanism.In this study,network pharmacology was used to explore the potential therapeutic mechanism of BCG on FI caused by LER.Methods:The corresponding herb targets were obtained by conducting a search in the Traditional Chinese Medicine Systems Pharmacology Database and PubMed-reported literature.Disease targets were obtained from the following databases:Comparative Toxicogenomics Database,Human Phenotype Ontology,and Therapeutic Target Database.Treatments for LER using BCG have used target matching(BCG e LER target).Then,the predicted targets were uploaded to the Search Tool for the Retrieval of Interacting Genes/Proteins database for gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses.Furthermore,triptorelin acetate for injection t menotrophin t chorionic gonadotropin for injection were used to establish a mouse model of blastocyst implantation disorder and to evaluate the in vivo effect of BCG on blastocyst implantation.Results:Overall,156 bioactive chemical components and 1092 targets of BCG were identified.The results indicated that 482 biological processes(FDR<0.01)and 15 pathways(FDR<0.01)related to BCG participated in the complex treatment effects and were associated with the endocrine system,inflammatory responses,metabolism,apoptosis,ovulatory performance,and angiogenesis.Moreover,16 hub nodes of BCG including estrogen receptor(ESR1),estrogen receptor beta(ESR2),progesterone receptor,et al,were recognized as potential treatment targets and might help clarify the underlying therapeutic mechanisms of BCG for female infertility.BCG significantly increased the protein expressions of estrogen receptors and progesterone receptors.Conclusions:These findings reveal the potential therapeutic mechanism of BCG for female infertility involves low endometrial receptivity,which should be evaluated further.展开更多
Licorice is one of the oldest herbal medicines for its various ethno pharmacological uses.In both Asian and European countries,it has been recorded for treatment of inflammatory diseases.A large number of ingredients ...Licorice is one of the oldest herbal medicines for its various ethno pharmacological uses.In both Asian and European countries,it has been recorded for treatment of inflammatory diseases.A large number of ingredients have been isolated from licorice,including triterpene saponins and flavonoids,which are normally being considered to be the main biologically active components.In the last decade,licorice has been proved exert anti-diabetic effect in various in vivo and in vitro models of diabetes mellitus.Furthermore,licorice can also antagonize all sorts of diabetes complications,including diabetic nephropathy,atherosclerosis,diabetic retinopathy and neuropathy.Except anti-inflammation,licorice and its active components show anti-diabetic effects by improving insulin resistance and increasing insulin secretion,regulating lipid metabolism,and anti-oxidation.The useful effects of licorice and its active components are due to regulating different pathways and proteins,including NF-κB,AMPK,insulin signaling pathway,MAPK,etc.In this review,we provide an overview of the beneficial effects and related molecular mechanism of licorice and its effective components on improving diabetes and its complications.展开更多
The hybrid graphene-quantum dot devices can potentially be used to tailor the electronic, optical, and chemical properties of graphene. Here, the low temperature electronic transport properties of bilayer graphene dec...The hybrid graphene-quantum dot devices can potentially be used to tailor the electronic, optical, and chemical properties of graphene. Here, the low temperature electronic transport properties of bilayer graphene decorated with PbS colloid quantum dots(CQDs) have been investigated in the weak or strong magnetic fields. The presence of the CQDs introduces additional scattering potentials that alter the magnetotransport properties of the graphene layers, leading to the observation of a new set of magnetoconductance oscillations near zero magnetic field as well as the high-field quantum Hall regime.The results bring about a new strategy for exploring the quantum interference effects in two-dimensional materials which are sensitive to the surrounding electrostatic environment, and open up a new gateway for exploring the graphene sensing with quantum interference effects.展开更多
The electronic Fabry–Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasipa...The electronic Fabry–Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasiparticles. Here we report on realizing a quantum Hall Fabry–Pérot interferometer based on monolayer graphene. We observe resistance oscillations as a function of perpendicular magnetic field and gate voltage both on the electron and hole sides. Their Coulomb-dominated origin is revealed by the positive(negative) slope of the constant phase lines in the plane of magnetic field and gate voltage on the electron(hole) side. Our work demonstrates that the graphene interferometer is feasible and paves the way for the studies of edge state interferences since high-Landau-level and even denominator fractional quantum Hall states have been found in graphene.展开更多
Introduction of spin-orbit coupling(SOC)in a Josephson junction(JJ)gives rise to unusual Josephson effects.We investigate JJs based on a newly discovered heterodimensional superlattice V_(5)S_(8) with a special form o...Introduction of spin-orbit coupling(SOC)in a Josephson junction(JJ)gives rise to unusual Josephson effects.We investigate JJs based on a newly discovered heterodimensional superlattice V_(5)S_(8) with a special form of SOC.The unique homointerface of our JJs enables elimination of extrinsic effects due to interfaces and disorder.We observe asymmetric Fraunhofer patterns with respect to both the perpendicular magnetic field and the current.The asymmetry is influenced by an in-plane magnetic field.Analysis of the pattern points to a nontrivial spatial distribution of the Josephson current that is intrinsic to the SOC in V_(5)S_(8).展开更多
Superconducting wire-networks are paradigms to study Cooper pairing issues,vortex dynamics and arrangements.Recently,emergent low-dimensional crystalline superconductors were reported in the minimal-disorder limit,pro...Superconducting wire-networks are paradigms to study Cooper pairing issues,vortex dynamics and arrangements.Recently,emergent low-dimensional crystalline superconductors were reported in the minimal-disorder limit,providing novel platforms to reveal vortices-related physics.Study on superconducting loops with high-crystallinity is thus currently demanded.Here,we report fabrication and transport measurement of finite square-network based on two-dimensional crystalline superconductor Mo_(2)C.We observe oscillations in the resistance as a function of the magnetic flux through the loops.Resistance dips at both matching field and fractional fillings are revealed.Temperature and current evolutions are carried out in magnetoresistance to study vortex dynamics.The amplitude of oscillation is enhanced due to the interaction between thermally activated vortices and the currents induced in the loops.The driving current reduces the effective activation energy for vortex,giving rise to stronger vortex interaction.Moreover,by the thermally activated vortex creep model,we derive the effective potential barrier for vortex dissipation,which shows well-defined correspondence with structures in magnetoresistance.Our work shows that low-dimensional crystalline superconducting network based on Mo_(2)C possesses pronounced potential in studying the modulation of vortex arrangements and dynamics,paving the way for further investigations on crystalline superconducting network with various configurations.展开更多
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25020205)the program of Science and Technology on Plasma Physics Laboratory,China Academy of Engineering Physics(Grant No.6142A04220108)。
文摘A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.
基金Project supported by the National Natural Science Foundation of China (Grant No.11905280)。
文摘Recent experimental progresses regarding broadband laser-plasma instabilities(LPIs)show that a 0.6%laser bandwidth can reduce backscatters of the stimulated Brillouin scattering(SBS)and the stimulated Raman scattering(SRS)at normal incidence[Phys.Rev.Lett.132035102(2024)].In this paper,we present a further discussion of the spectral distributions of the scatters developed by broadband LPIs,in addition to a brief validation of the effectiveness of bandwidth on LPIs mitigation at oblique incidence.SBS backscatter has a small redshift in the broadband case contrary to the blueshift with narrowband laser,which may be explained by the self-cross beam energy transfer between the various frequency components within the bandwidth.SRS backscatter spectrum presents a peak at a longer wavelength in the broadband case compared to the short one in the narrowband case,which is possibly attributed to the mitigation effect of bandwidth on filaments at underdense plasmas.The three-halves harmonic emission(3ω/2)has a one-peak spectral distribution under the broadband condition,which is different from the two-peak distribution under the narrowband condition,and may be related to the spectral mixing of different frequency components within the bandwidth if the main sources of the two are both two-plasmon decays.
基金supported by the Special Fund for Beijing Common Construction Project
文摘To select maternal parents with high fertility and high combining ability during cross breeding of Populus tomentosa Carr., the ploidy level of 75 female clones was determined using flow cytometry. In addition, genetic variations and phenotypic correlations of seed traits and early growth traits, as well as the general combining ability(GCA) for seedling height(SH) and basal diameter(BD) of all diploid half-sib families were examined. A total of 26 natural triploid clones were identified. For all diploid families, family effects were significant for inflorescence length(IL), thousand kernel weight(TKW), seedling emergence rate(SER), and for SH and BD. There was a positive correlation between TKW and other traits,excluding IL. The seed-bearing coefficient(NS 9 SER)ranged from zero to 32.4%. Clones 3-10-2, 2-8, 3119,3206, and 3-10-1 had the best performance of the GCA for SH and BD. Based on the fertility and GCA for SH and BD, clone 3-10-2 and clone 3119 could be used as female parents for controlled cross-breeding of P. tomentosa.
文摘目的为解析党参NBS-LRR(Nucleotide-binding site and leucine-rich repeat)抗病基因家族,探究党参抗根腐病机制,从而解决党参根腐病害难题,促进党参育种及产业发展。方法基于党参响应根腐病病原菌的转录组数据,通过运用生物信息学方法对党参NBS-LRR家族基因进行理化性质、基因结构、系统发育、表达模式及互作网络分析。结果成功鉴定到88个党参NBS-LRR家族基因,包括N、NL、CN、CNL、TN、TNL、PN共7种类型,分别有50、14、1、14、4、3、2个基因。结果表明,党参CNL及TNL类基因结构比较保守;党参CNL亚家族基因在进化过程中发生扩增;党参NBS-LRR家族基因在尖孢镰刀菌(Fusarium oxysporum)侵染条件下存在时间表达模式差异,且侵染前期(6-24 h)高表达的基因DN64786c1g6、DN64786c1g5、DN48234c0g2、DN54844c1g2、DN59747c0g3、DN56071c1g8、DN64591c1g1、DN48464c1g1、DN59886c0g1在调控党参抗病过程中发挥重要作用。其中党参的抗病蛋白DN54844c1g2可能与GLR家族互作,进而通过调节Ca2+内流参与免疫调控;DN64786c1g5可能与CYTC-1和CYTC-2互作,进而通过参与氧化还原反应参与党参响应根腐病过程;DN59747c0g3可能与MPK3互作,进而通过参与MAP信号级联、磷酸化WRKY转录因子以及参与超敏反应(HR),在党参响应根腐病过程中发挥重要作用。结论党参NBSLRR家族基因的鉴定及表达分析对于探究党参抗根腐病机制、发掘基因功能具有重要意义。
文摘2018年6月,安徽某鹅场接种过小鹅瘟蛋黄抗体的2批雏鹅发生小鹅瘟,再次用小鹅瘟蛋黄抗体产品进行紧急接种,有一定的控制效果,但仍有雏鹅死亡。为分析其原因,采集了8只9-12日龄病死鹅的肝脏和脾脏,用PCR扩增检测水禽细小病毒的VP3基因,选8份阳性样品测定了鹅细小病毒(GPV)VP1部分序列并进行了序列分析。结果显示,16份组织样品均为阳性。在443 nt VP1区,所测8株病毒之间的序列同源性为100%,与GPV亚洲强毒分支之间的序列同源性为99%。随后,用琼脂扩散沉淀试验分析了2株待检毒株与GPV参考毒株的抗原相关性,并测定了2种小鹅瘟蛋黄抗体产品的效价。结果显示,待检毒株与参考毒株具有相同的沉淀抗原,2种小鹅瘟蛋黄抗体产品的效价分别为1∶2和1∶16。表明免疫雏鹅仍发生小鹅瘟的原因并非源自GPV变异,而是与某些蛋黄抗体产品的抗体效价较低有关。
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA25020205)Shanghai Science and Technology Development Funds (No. 20692114101)
文摘The distribution and sources of EMPs produced at Shenguang-Ⅱ(SG-Ⅱ)series laser facilities are systematically investigated.The results indicate that the EMP amplitudes in the SG-Ⅱps PW laser are very strong,one order higher than those from the SG-Ⅱlaser facility.EMPs outside the target chamber decrease exponentially with the distance from the measuring points to the target chamber center at the two laser facilities.Moreover,EMPs can be remarkably reduced when the picosecond laser together with the nanosecond laser is incident to targets compared to the SG-Ⅱps PW laser alone.The resulting conclusions are expected to offer experimental supports for further effective EMPs shielding design and achievement in high-power laser facilities.
基金the National Natural Science Foundation(Project No.81070868/H1409)the State Key Laboratory of Oral Diseases,Sichuan University.
文摘Cellular fibronectin (cFn) is a type of bioactive non-collagen glycoprotein regarded as the main substance used to maintain periodontal attachment. The content of cFn in some specific sites can reflect the progress of periodontitis or peri-implantitis. This study aims to evaluate the expression of cFn messenger RNA (mRNA) in tissues of adult periodontitis and peri-implantitis by real-time fluorescent quantitative polymerase chain reaction (PCR) and to determine its clinical significance. A total of 30 patients were divided into three groups of 10: healthy, adult periodontitis and peri-implantitis. Periodontal tissue biopsies (1 mmx I mmx I mm) from each patient were frozen in liquid nitrogen. Total RNA was extracted from these tissues, and the content, purity and integrity were detected. Specific primers were designed according to the sequence, and the mRNA expression levels of cellular fibronectin were detected by real-time PCR. The purity and integrity of the extracted total RNA were both high, and the specificity of amplified genes was very high with no other pollution. The mRNA expression of cFn in the adult periodontitis group (1.526+0.441) was lower than that in the healthy group (3.253+0.736). However, the mRNA expression of cFn in the peri-implantitis group (3.965+0.537) was significantly higher than that in the healthy group. The difference revealed that although both processes were destructive inflammatory reactions in the periodontium, the pathomechanisms were different and the variation started from the transcription level of the cFn gene.
基金Supported by the China Agriculture Research System(CARS-170303)the Special Fund for the Construction of Modern Agricultural Technology System in Yunnan Province+1 种基金the Training Project of Yunling Industry and Technology Leading Talents(2018LJRC56)the Project for the Cooperation between Scientific Research Institutes and Enterprises in Nanhua of Lincang(LT11-12E120810-002<12-13E130328-041)
文摘This research was aimed at the defects in traditional artificial spraying control method and the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle and late stage of sugarcane high stalk crops.The aerial pesticide application technology for sugarcane main diseases and pests was systematically developed and demonstrated from the aspects of aircraft type choice,selection of special pesticides and auxiliaries,integration of pesticides and equipment,field operation,technical specifications,and large-scale application organization mode.The UAV model and flight technical parameters suitable for the sugarcane planting area in low-latitude plateau were analyzed,and the optimal agent formulation combination and application technology of the UAV flight control were screened out,and the UAV flight control was applied to the major sugarcane pests and diseases control in the low-latitude plateau in large scale(UAV flight control was popularized and applied to 15 527 hm 2 in 2018).The research results provided mature whole-process technical support for the normalization of the application of the UVA flight control of major sugarcane pests and diseases.The UAV control technology for major sugarcane pests and diseases had the advantages of ultra-low pesticides applying dosage and high operating efficiency,and could effectively solve the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle late growth stage of high stalk crops.This technology successfully opened up a simple,efficient and new way for the effective control of major sugarcane pests and diseases,and practically accelerated the process of integrated control and prevention of sugarcane pests and diseases.In addition,this technology had an extremely significant effect on reducing the loss of sugarcane farmers and enterprises caused by the epidemic and outbreak of sugarcane pests and diseases,increasing sugarcane yield and sugar content.At the same time,this technology played an important role in realizing the whole-process precise control of sugarcane pests and diseases,improving the quality and increasing the efficiency of sugarcane,and guaranteeing the national sugar safety.
基金This study was supported by Beijing Nova Program(Z181100006218083)the Project of the National Natural Science Foundation of China(81874421)the Youth Project of the National Natural Science Foundation of China(81904240).
文摘Objective:Bushen Chengyun granule(BCG)is an empirical treatment for female infertility(FI)caused by low endometrial receptivity(LER)involving a poorly understood mechanism.In this study,network pharmacology was used to explore the potential therapeutic mechanism of BCG on FI caused by LER.Methods:The corresponding herb targets were obtained by conducting a search in the Traditional Chinese Medicine Systems Pharmacology Database and PubMed-reported literature.Disease targets were obtained from the following databases:Comparative Toxicogenomics Database,Human Phenotype Ontology,and Therapeutic Target Database.Treatments for LER using BCG have used target matching(BCG e LER target).Then,the predicted targets were uploaded to the Search Tool for the Retrieval of Interacting Genes/Proteins database for gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses.Furthermore,triptorelin acetate for injection t menotrophin t chorionic gonadotropin for injection were used to establish a mouse model of blastocyst implantation disorder and to evaluate the in vivo effect of BCG on blastocyst implantation.Results:Overall,156 bioactive chemical components and 1092 targets of BCG were identified.The results indicated that 482 biological processes(FDR<0.01)and 15 pathways(FDR<0.01)related to BCG participated in the complex treatment effects and were associated with the endocrine system,inflammatory responses,metabolism,apoptosis,ovulatory performance,and angiogenesis.Moreover,16 hub nodes of BCG including estrogen receptor(ESR1),estrogen receptor beta(ESR2),progesterone receptor,et al,were recognized as potential treatment targets and might help clarify the underlying therapeutic mechanisms of BCG for female infertility.BCG significantly increased the protein expressions of estrogen receptors and progesterone receptors.Conclusions:These findings reveal the potential therapeutic mechanism of BCG for female infertility involves low endometrial receptivity,which should be evaluated further.
基金This work was supported by State Key Program of National Natural Science Foundation of China(Grant number:81430095).
文摘Licorice is one of the oldest herbal medicines for its various ethno pharmacological uses.In both Asian and European countries,it has been recorded for treatment of inflammatory diseases.A large number of ingredients have been isolated from licorice,including triterpene saponins and flavonoids,which are normally being considered to be the main biologically active components.In the last decade,licorice has been proved exert anti-diabetic effect in various in vivo and in vitro models of diabetes mellitus.Furthermore,licorice can also antagonize all sorts of diabetes complications,including diabetic nephropathy,atherosclerosis,diabetic retinopathy and neuropathy.Except anti-inflammation,licorice and its active components show anti-diabetic effects by improving insulin resistance and increasing insulin secretion,regulating lipid metabolism,and anti-oxidation.The useful effects of licorice and its active components are due to regulating different pathways and proteins,including NF-κB,AMPK,insulin signaling pathway,MAPK,etc.In this review,we provide an overview of the beneficial effects and related molecular mechanism of licorice and its effective components on improving diabetes and its complications.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300601 and 2017YFA0303304)the National Natural Science Foundation of China(Grant Nos.11774005,11874071,91221202,and 91421303)
文摘The hybrid graphene-quantum dot devices can potentially be used to tailor the electronic, optical, and chemical properties of graphene. Here, the low temperature electronic transport properties of bilayer graphene decorated with PbS colloid quantum dots(CQDs) have been investigated in the weak or strong magnetic fields. The presence of the CQDs introduces additional scattering potentials that alter the magnetotransport properties of the graphene layers, leading to the observation of a new set of magnetoconductance oscillations near zero magnetic field as well as the high-field quantum Hall regime.The results bring about a new strategy for exploring the quantum interference effects in two-dimensional materials which are sensitive to the surrounding electrostatic environment, and open up a new gateway for exploring the graphene sensing with quantum interference effects.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300601 and 2017YFA0303304)the National Natural Science Foundation of China(Grant Nos.11874071,11774005,and 11974026)Beijing Academy of Quantum Information Sciences,China(Grant No.Y18G22)
文摘The electronic Fabry–Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasiparticles. Here we report on realizing a quantum Hall Fabry–Pérot interferometer based on monolayer graphene. We observe resistance oscillations as a function of perpendicular magnetic field and gate voltage both on the electron and hole sides. Their Coulomb-dominated origin is revealed by the positive(negative) slope of the constant phase lines in the plane of magnetic field and gate voltage on the electron(hole) side. Our work demonstrates that the graphene interferometer is feasible and paves the way for the studies of edge state interferences since high-Landau-level and even denominator fractional quantum Hall states have been found in graphene.
基金Project supported by the National Key Basic Research Program of China(Grant No.2016YFA0300600)the National Natural Science Foundation of China(Grant Nos.11574005 and 11774009)。
文摘Introduction of spin-orbit coupling(SOC)in a Josephson junction(JJ)gives rise to unusual Josephson effects.We investigate JJs based on a newly discovered heterodimensional superlattice V_(5)S_(8) with a special form of SOC.The unique homointerface of our JJs enables elimination of extrinsic effects due to interfaces and disorder.We observe asymmetric Fraunhofer patterns with respect to both the perpendicular magnetic field and the current.The asymmetry is influenced by an in-plane magnetic field.Analysis of the pattern points to a nontrivial spatial distribution of the Josephson current that is intrinsic to the SOC in V_(5)S_(8).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974026,11774005,and 51802314)the National Key Research and Development Program of China(Grant No.2017YFA0303304)+1 种基金Science Foundation of Jihua Laboratory(Grant No.2021B0301030003-03)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)。
文摘Superconducting wire-networks are paradigms to study Cooper pairing issues,vortex dynamics and arrangements.Recently,emergent low-dimensional crystalline superconductors were reported in the minimal-disorder limit,providing novel platforms to reveal vortices-related physics.Study on superconducting loops with high-crystallinity is thus currently demanded.Here,we report fabrication and transport measurement of finite square-network based on two-dimensional crystalline superconductor Mo_(2)C.We observe oscillations in the resistance as a function of the magnetic flux through the loops.Resistance dips at both matching field and fractional fillings are revealed.Temperature and current evolutions are carried out in magnetoresistance to study vortex dynamics.The amplitude of oscillation is enhanced due to the interaction between thermally activated vortices and the currents induced in the loops.The driving current reduces the effective activation energy for vortex,giving rise to stronger vortex interaction.Moreover,by the thermally activated vortex creep model,we derive the effective potential barrier for vortex dissipation,which shows well-defined correspondence with structures in magnetoresistance.Our work shows that low-dimensional crystalline superconducting network based on Mo_(2)C possesses pronounced potential in studying the modulation of vortex arrangements and dynamics,paving the way for further investigations on crystalline superconducting network with various configurations.