To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new lig...To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.展开更多
Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response ...Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response without benefit to survival.In this study,we further explored the role of these two postoperative CRT regimens in patients with pathological stage N2 rectal cancer.Methods:This study was a subgroup analysis of a randomized clinical trial.A total of 180 patients with pathological stage N2 rectal cancer were eligible,85 received capecitabine with radiotherapy(RT),and 95 received capecitabine and oxaliplatin with RT.Patients in both groups received adjuvant chemotherapy[capecitabine and oxaliplatin(XELOX);or fluorouracil,leucovorin,and oxaliplatin(FOLFOX)]after CRT.Results:At a median follow-up of 59.2[interquartile range(IQR),34.0−96.8]months,the three-year diseasefree survival(DFS)was 53.3%and 64.9%in the control group and the experimental group,respectively[hazard ratio(HR),0.63;95%confidence interval(95%CI),0.41−0.98;P=0.04].There was no significant difference between the groups in overall survival(OS)(HR,0.62;95%CI,0.37−1.05;P=0.07),the incidence of locoregional recurrence(HR,0.62;95%CI,0.24−1.64;P=0.33),the incidence of distant metastasis(HR,0.67;95%CI,0.42−1.06;P=0.09)and grade 3−4 acute toxicities(P=0.78).For patients with survival longer than 3 years,the conditional overall survival(COS)was significantly better in the experimental group(HR,0.39;95%CI,0.16−0.96;P=0.03).Conclusions:Our results indicated that adding oxaliplatin to capecitabine-based postoperative CRT is safe and effective in patients with pathological stage N2 rectal cancer.展开更多
The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy...The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.展开更多
Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes of...Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.展开更多
Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to creat...Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to create a silicosis model.Ferrostatin-1(Fer-1)and deferoxamine(DFO)were used to suppress ferroptosis.Serum biomarkers,oxidative stress markers,histopathology,iron content,and the expression of ferroptosis-related proteins were assessed.Results SiO_(2) altered serum cardiac injury biomarkers,oxidative stress,iron accumulation,and ferroptosis markers in myocardial tissue.Fer-1 and DFO reduced lipid peroxidation and iron overload,and alleviated SiO_(2)-induced mitochondrial damage and myocardial injury.SiO_(2) inhibited Nuclear factor erythroid 2-related factor 2(Nrf2)and its downstream antioxidant genes,while Fer-1 more potently reactivated Nrf2 compared to DFO.Conclusion Iron overload-induced ferroptosis contributes to SiO_(2)-induced cardiac injury.Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO_(2) cardiotoxicity,potentially via modulation of the Nrf2 pathway.展开更多
The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industr...The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.展开更多
With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the pr...With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.展开更多
Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused ...Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused by overfertilization.We subjected a panel of 389 wheat accessions to N and chlorate(a nitrate analog)treatments to identify quantitative trait loci(QTL)controlling NUE-associated traits at the wheat seedling stage.Genotyping the panel with a 660K single-nucleotide polymorphism(SNP)array,we identified 397 SNPs associated with N-sensitivity index and chlorate inhibition rate.These SNPs were merged into 49 QTL,of which eight were multi-environment stable QTL and 27 were located near previously reported QTL.A set of 135 candidate genes near the 49 QTL included TaBOX(F-box family protein)and TaERF(ethylene-responsive transcription factor).A Tabox mutant was more sensitive to low-N stress than the wild-type plant.We developed two functional markers for Hap 1,the favorable allele of TaBOX.展开更多
The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)...Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.展开更多
The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performan...The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.展开更多
BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms rema...BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms remain unclear.AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell(UCMSCs)exosomes,as well as their potential in alleviating NEC in neonatal mice.METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide(LPS),after which the mice received human UCMSC exosomes(hUCMSC-exos).The control mice were allowed to breastfeed with their dams.Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting.Colon tissues were collected from NEC neonates and analyzed by immunofluorescence.Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC,resulting in reduced expression of tight junction proteins and an increased inflammatory response.The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy.We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment.These findings also enhance our understanding of the role of the autophagy mechanism in NEC,offering potential avenues for identifying new therapeutic targets.展开更多
Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to...Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to November 2021 were randomly selected,and all samples were manually microscopic examined after the detection of the UN9000 urine analysis line.The intelligent audit rules(including the microscopic review rules and manual verification rules)were validated based on the manual microscopic examination and manual audit,and the rules were adjusted to apply to our laboratory.The laboratory turnaround time(TAT)before and after the application of intelligent audit rules was compared.Result:The microscopic review rate of intelligent rules was 25.63%(292/1139),the true positive rate,false positive rate,true negative rate,and false negative rate were 27.66%(315/1139),6.49%(74/1139),62.34%(710/1139)and 3.51%(40/1139),respectively.The approval consistency rate of manual verification rules was 84.92%(727/856),the approval inconsistency rate was 0%(0/856),the interception consistency rate was 12.61%(108/856),and the interception inconsistency rate was 0%(0/856).Conclusion:The intelligence audit rules for urine analysis by Cui et al.have good clinical applicability in our laboratory.展开更多
Tortuous hydraulic fractures(HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to expl...Tortuous hydraulic fractures(HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to explore HF growth behavior in conglomerate through laboratory fracturing experiments under true tri-axial stresses combined with computed tomography scanning and acoustic emission(AE) monitoring. The effects of gravel size, horizontal differential stress, and AE focal mechanisms were examined. Especially, the injection pressure and the AE response features during HF initiation and propagation in conglomerate were analyzed. Simple HFs with narrow microfractures are created in conglomerate when the gravels are considerably smaller than the specimen, whereas complex fractures are created when the gravels are similar in size to the specimen, even under high horizontal differential stresses. Breakdown pressure and AE rates are high when a HF is initiated from the high-strength gravel. A large pressure decline after the breakdown may indicate the creation of a planar and wide HF. Analyzing the focal mechanism indicates that the shear mechanism generally dominates with an increase in the HF complexity. Tensile events are likely to occur during HF initiation and are located around the wellbore. Shear events occur mainly around the nonplanar and complex matrix/gravel interfaces.展开更多
Resilience of air&space defense system of systems(SoSs)is critical to national air defense security.However,the research on it is still scarce.In this study,the resilience of air&space defense SoSs is firstly ...Resilience of air&space defense system of systems(SoSs)is critical to national air defense security.However,the research on it is still scarce.In this study,the resilience of air&space defense SoSs is firstly defined and the kill network theory is established by combining super network and kill chain theory.Two cases of the SoSs are considered:(a)The kill chains are relatively homogenous;(b)The kill chains are relatively heterogenous.Meanwhile,two capability assessment methods,which are based on the number of kill chains and improved self-information quantity,respectively,are proposed.The improved self-information quantity modeled based on nodes and edges can achieve qualitative and quantitative assessment of the combat capability by using linguistic Pythagorean fuzzy sets.Then,a resilient evaluation index consisting of risk response,survivability,and quick recovery is proposed accordingly.Finally,network models for regional air defense and anti-missile SoSs are established respectively,and the resilience measurement results are verified and analyzed under different attack and recovery strategies,and the optimization strategies are also proposed.The proposed theory and method can meet different demands to evaluate combat capability and optimize resilience of various types of air&space defense and similar SoSs.展开更多
This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objecti...This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.展开更多
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c...Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.展开更多
Strontium titanate(SrTiO3) is a promising n-type material for thermoelectric applications. However, its relatively high thermal conductivity limits its performance in efficiently converting heat into electrical powe...Strontium titanate(SrTiO3) is a promising n-type material for thermoelectric applications. However, its relatively high thermal conductivity limits its performance in efficiently converting heat into electrical power through thermoelectric effect.This work shows that the thermal conductivity of SrTiO3 can be effectively reduced by annealing treatments, through an integrated study of laser flash measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray absorption fine structure, and first-principles calculations. A phonon scattering model is proposed to explain the reduction of thermal conductivity after annealing. This work suggests a promising means to characterize and optimize the material for thermoelectric applications.展开更多
Rare earth elements(REEs)can be used to trace source materials and identify their provenances,because of significant conservation and immobility during chemical alteration processes after erosion of materials from the...Rare earth elements(REEs)can be used to trace source materials and identify their provenances,because of significant conservation and immobility during chemical alteration processes after erosion of materials from the provenance.This study focused on the temporal variation of REEs for columnar sediments from the mouth of Jiaozhou Bay in North China to understand the potential controls for the geochemical variations of sediments.Through extraction experiments,we identified that the residual fraction is the main host for REEs compared with other fractions(i.e.,exchangeable and carbonate fraction,easily reducible oxides fraction,reducible oxides fraction,magnetite fraction).REE ratios(e.g.,La_(N)/Sm_(N)and La_(N)/Yb_(N);N:normalized by chondrite)lack correlations with grain size or the chemical index of alteration(CIA),which is correlated with major elements.All these indicate that these REE variations reflect the varying contribution of source materials from different provenances instead of grain size or chemical weathering effects.REE ratios(e.g.,La_(N)/Sm_(N)and La_(N)/Yb_(N))remain relatively constant until the depth of roughly 40 cm(equivalent to the year 1995),and show obvious changes beyond this depth.Compared REE characteristics of Jiaozhou Bay with those of neighboring rivers and bedrocks,the relative contributions of Dagu River-Jiaolai River,and Licun River may have been increased during the sedimentary processes,which could be caused by the construction of reservoir and related change of aquaculture(e.g.,rapid accumulation of organic materials).展开更多
基金support provided by the National Natural Science Foundation of China(22122802,22278044,and 21878028)the Chongqing Science Fund for Distinguished Young Scholars(CSTB2022NSCQ-JQX0021)the Fundamental Research Funds for the Central Universities(2022CDJXY-003).
文摘To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.
基金supported by grants from Sanming Project of Medicine in Shenzhen(No.SZSM202211030)the Science and Technology Department Basic Research Project of Shanxi(No.202203021221284)。
文摘Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response without benefit to survival.In this study,we further explored the role of these two postoperative CRT regimens in patients with pathological stage N2 rectal cancer.Methods:This study was a subgroup analysis of a randomized clinical trial.A total of 180 patients with pathological stage N2 rectal cancer were eligible,85 received capecitabine with radiotherapy(RT),and 95 received capecitabine and oxaliplatin with RT.Patients in both groups received adjuvant chemotherapy[capecitabine and oxaliplatin(XELOX);or fluorouracil,leucovorin,and oxaliplatin(FOLFOX)]after CRT.Results:At a median follow-up of 59.2[interquartile range(IQR),34.0−96.8]months,the three-year diseasefree survival(DFS)was 53.3%and 64.9%in the control group and the experimental group,respectively[hazard ratio(HR),0.63;95%confidence interval(95%CI),0.41−0.98;P=0.04].There was no significant difference between the groups in overall survival(OS)(HR,0.62;95%CI,0.37−1.05;P=0.07),the incidence of locoregional recurrence(HR,0.62;95%CI,0.24−1.64;P=0.33),the incidence of distant metastasis(HR,0.67;95%CI,0.42−1.06;P=0.09)and grade 3−4 acute toxicities(P=0.78).For patients with survival longer than 3 years,the conditional overall survival(COS)was significantly better in the experimental group(HR,0.39;95%CI,0.16−0.96;P=0.03).Conclusions:Our results indicated that adding oxaliplatin to capecitabine-based postoperative CRT is safe and effective in patients with pathological stage N2 rectal cancer.
基金National Natural Science Foundation of China(No.51974352 and No.52288101)China University of Petroleum(East China)(No.2018000025 and No.2019000011)。
文摘The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.
基金National Natural Science Foundation of China (22179008, 21875022)Yibin ‘Jie Bang Gua Shuai’ (2022JB004)+3 种基金support from the Beijing Nova Program (20230484241)support from the Postdoctoral Fellowship Program of CPSF (GZB20230931)Special Support of the Chongqing Postdoctoral Research Project (2023CQBSHTB2041)Initial Energy Science & Technology Co., Ltd (IEST)。
文摘Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.
基金supported by the National Natural Science Foundation of China[No.U21A20334,82373544]Hebei Provincial Department of Science and Technology Centrally Guided Local Development Fund Project[236Z7705G]Occupational health risk assessment and the formulation of national occupational health standards[102393220020090000020].
文摘Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to create a silicosis model.Ferrostatin-1(Fer-1)and deferoxamine(DFO)were used to suppress ferroptosis.Serum biomarkers,oxidative stress markers,histopathology,iron content,and the expression of ferroptosis-related proteins were assessed.Results SiO_(2) altered serum cardiac injury biomarkers,oxidative stress,iron accumulation,and ferroptosis markers in myocardial tissue.Fer-1 and DFO reduced lipid peroxidation and iron overload,and alleviated SiO_(2)-induced mitochondrial damage and myocardial injury.SiO_(2) inhibited Nuclear factor erythroid 2-related factor 2(Nrf2)and its downstream antioxidant genes,while Fer-1 more potently reactivated Nrf2 compared to DFO.Conclusion Iron overload-induced ferroptosis contributes to SiO_(2)-induced cardiac injury.Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO_(2) cardiotoxicity,potentially via modulation of the Nrf2 pathway.
基金supported by the National Key R&D Program of China(no.2022YFA1504902,2022YFB4201802)National Natural Science Foundation of China(no.21721004,21801239,22178335,22078318),DICP(Grant:DICP I201944)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(grant:YLU-DNL Fund 2021020).
文摘The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2022ZYGXZR099)Pazhou Lab(No.PZL2022KF0010).
文摘With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.
基金This work was supported by the National Key Research and Development Program of China(2022YFD1200201)Henan Provincial Science and Technology Research and Development Plan Joint Fund(222301420025)the Agricultural Science and Technology Innovation Program(ASTIP)of CAAS.
文摘Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused by overfertilization.We subjected a panel of 389 wheat accessions to N and chlorate(a nitrate analog)treatments to identify quantitative trait loci(QTL)controlling NUE-associated traits at the wheat seedling stage.Genotyping the panel with a 660K single-nucleotide polymorphism(SNP)array,we identified 397 SNPs associated with N-sensitivity index and chlorate inhibition rate.These SNPs were merged into 49 QTL,of which eight were multi-environment stable QTL and 27 were located near previously reported QTL.A set of 135 candidate genes near the 49 QTL included TaBOX(F-box family protein)and TaERF(ethylene-responsive transcription factor).A Tabox mutant was more sensitive to low-N stress than the wild-type plant.We developed two functional markers for Hap 1,the favorable allele of TaBOX.
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.
文摘Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.
文摘The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.
基金Supported by China International Medical Foundation,No.Z-2019-41-2101-04China Postdoctoral Science Foundation Funded Project,No.2022M721957+1 种基金West China Psychiatric Association,No.WL2022102Guangdong Basic and Applied Basic Research Foundation,No.2023A1515110717.
文摘BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms remain unclear.AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell(UCMSCs)exosomes,as well as their potential in alleviating NEC in neonatal mice.METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide(LPS),after which the mice received human UCMSC exosomes(hUCMSC-exos).The control mice were allowed to breastfeed with their dams.Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting.Colon tissues were collected from NEC neonates and analyzed by immunofluorescence.Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC,resulting in reduced expression of tight junction proteins and an increased inflammatory response.The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy.We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment.These findings also enhance our understanding of the role of the autophagy mechanism in NEC,offering potential avenues for identifying new therapeutic targets.
文摘Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to November 2021 were randomly selected,and all samples were manually microscopic examined after the detection of the UN9000 urine analysis line.The intelligent audit rules(including the microscopic review rules and manual verification rules)were validated based on the manual microscopic examination and manual audit,and the rules were adjusted to apply to our laboratory.The laboratory turnaround time(TAT)before and after the application of intelligent audit rules was compared.Result:The microscopic review rate of intelligent rules was 25.63%(292/1139),the true positive rate,false positive rate,true negative rate,and false negative rate were 27.66%(315/1139),6.49%(74/1139),62.34%(710/1139)and 3.51%(40/1139),respectively.The approval consistency rate of manual verification rules was 84.92%(727/856),the approval inconsistency rate was 0%(0/856),the interception consistency rate was 12.61%(108/856),and the interception inconsistency rate was 0%(0/856).Conclusion:The intelligence audit rules for urine analysis by Cui et al.have good clinical applicability in our laboratory.
基金supported by the Major National Science and Technology Projects of China (No. 2016ZX05046004002 No. 2017ZX05039002-003)the National Basic Research Program of China (No. 2015CB250903)
文摘Tortuous hydraulic fractures(HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to explore HF growth behavior in conglomerate through laboratory fracturing experiments under true tri-axial stresses combined with computed tomography scanning and acoustic emission(AE) monitoring. The effects of gravel size, horizontal differential stress, and AE focal mechanisms were examined. Especially, the injection pressure and the AE response features during HF initiation and propagation in conglomerate were analyzed. Simple HFs with narrow microfractures are created in conglomerate when the gravels are considerably smaller than the specimen, whereas complex fractures are created when the gravels are similar in size to the specimen, even under high horizontal differential stresses. Breakdown pressure and AE rates are high when a HF is initiated from the high-strength gravel. A large pressure decline after the breakdown may indicate the creation of a planar and wide HF. Analyzing the focal mechanism indicates that the shear mechanism generally dominates with an increase in the HF complexity. Tensile events are likely to occur during HF initiation and are located around the wellbore. Shear events occur mainly around the nonplanar and complex matrix/gravel interfaces.
基金supported by National Natural Science Foundation of China,grant numbers 72001214National Social Science Foundation of China,Young Talent Fund of University Association for Science and Technology in Shaanxi,China,No.20190108Natural Science Foundation of Shaanxi Province,grant number 2020JQ-484.
文摘Resilience of air&space defense system of systems(SoSs)is critical to national air defense security.However,the research on it is still scarce.In this study,the resilience of air&space defense SoSs is firstly defined and the kill network theory is established by combining super network and kill chain theory.Two cases of the SoSs are considered:(a)The kill chains are relatively homogenous;(b)The kill chains are relatively heterogenous.Meanwhile,two capability assessment methods,which are based on the number of kill chains and improved self-information quantity,respectively,are proposed.The improved self-information quantity modeled based on nodes and edges can achieve qualitative and quantitative assessment of the combat capability by using linguistic Pythagorean fuzzy sets.Then,a resilient evaluation index consisting of risk response,survivability,and quick recovery is proposed accordingly.Finally,network models for regional air defense and anti-missile SoSs are established respectively,and the resilience measurement results are verified and analyzed under different attack and recovery strategies,and the optimization strategies are also proposed.The proposed theory and method can meet different demands to evaluate combat capability and optimize resilience of various types of air&space defense and similar SoSs.
基金supported in part by the National Natural Science Foundation of China(NSFC)(61773260)the Ministry of Science and Technology (2018YFB130590)。
文摘This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objective of each agent is unknown to others. The above problem involves complexity simultaneously in the time and space aspects. Yet existing works about distributed optimization mainly consider privacy protection in the space aspect where the decision variable is a vector with finite dimensions. In contrast, when the time aspect is considered in this paper, the decision variable is a continuous function concerning time. Hence, the minimization of the overall functional belongs to the calculus of variations. Traditional works usually aim to seek the optimal decision function. Due to privacy protection and non-convexity, the Euler-Lagrange equation of the proposed problem is a complicated partial differential equation.Hence, we seek the optimal decision derivative function rather than the decision function. This manner can be regarded as seeking the control input for an optimal control problem, for which we propose a centralized reinforcement learning(RL) framework. In the space aspect, we further present a distributed reinforcement learning framework to deal with the impact of privacy protection. Finally, rigorous theoretical analysis and simulation validate the effectiveness of our framework.
基金support by the National Natural Science Foundation of China(51802269,21773138)Fundamental Research Funds for the Central Universities(XDJK2019AA002)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2018027)the innovation platform for academicians of Hainan province.
文摘Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1332105,51475396,11335006,21103109,21176152,and 21373137)the Natural Science Foundation of Fujian Province of China(Grant No.2013J01026)the Fundamental Research Funds for Central Universities of China(Grant Nos.2013121012,20720140517,20720160013,and 20720160020)
文摘Strontium titanate(SrTiO3) is a promising n-type material for thermoelectric applications. However, its relatively high thermal conductivity limits its performance in efficiently converting heat into electrical power through thermoelectric effect.This work shows that the thermal conductivity of SrTiO3 can be effectively reduced by annealing treatments, through an integrated study of laser flash measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray absorption fine structure, and first-principles calculations. A phonon scattering model is proposed to explain the reduction of thermal conductivity after annealing. This work suggests a promising means to characterize and optimize the material for thermoelectric applications.
基金Supported by the National Natural Science Foundation of China (No.41776069)the Science and Technology Innovation Project of Laoshan Laboratory (No.LSKJ202202905)the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (No.XDB42020302)。
文摘Rare earth elements(REEs)can be used to trace source materials and identify their provenances,because of significant conservation and immobility during chemical alteration processes after erosion of materials from the provenance.This study focused on the temporal variation of REEs for columnar sediments from the mouth of Jiaozhou Bay in North China to understand the potential controls for the geochemical variations of sediments.Through extraction experiments,we identified that the residual fraction is the main host for REEs compared with other fractions(i.e.,exchangeable and carbonate fraction,easily reducible oxides fraction,reducible oxides fraction,magnetite fraction).REE ratios(e.g.,La_(N)/Sm_(N)and La_(N)/Yb_(N);N:normalized by chondrite)lack correlations with grain size or the chemical index of alteration(CIA),which is correlated with major elements.All these indicate that these REE variations reflect the varying contribution of source materials from different provenances instead of grain size or chemical weathering effects.REE ratios(e.g.,La_(N)/Sm_(N)and La_(N)/Yb_(N))remain relatively constant until the depth of roughly 40 cm(equivalent to the year 1995),and show obvious changes beyond this depth.Compared REE characteristics of Jiaozhou Bay with those of neighboring rivers and bedrocks,the relative contributions of Dagu River-Jiaolai River,and Licun River may have been increased during the sedimentary processes,which could be caused by the construction of reservoir and related change of aquaculture(e.g.,rapid accumulation of organic materials).