Treating waste with a waste material using freely available solar energy is the most effective way towards sustainable future.In this study,a novel photocatalyst,partly derived from waste material from the coal indust...Treating waste with a waste material using freely available solar energy is the most effective way towards sustainable future.In this study,a novel photocatalyst,partly derived from waste material from the coal industry,was developed.Fly ash hybridized with ZnO(FAeZn)was synthesized as a potential photocatalyst for dye discoloration.The synthesized photocatalyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and ultravioletevisible/near infra-red spectroscopy.The photocatalytic activity was examined with the discoloration of methylene blue used as synthetic dye wastewater.All the experiments were performed in direct sunlight.The photocatalytic performance of FAeZn was found to be better than that of ZnO and the conventionally popular TiO2.The LangmuireHinshelwood model rate constant values of ZnO,TiO2,and FAeZn were found to be 0.016 min1,0.017 min1,and 0.020 min1,respectively.There were two reasons for this:(1)FAeZn was able to utilize both ultraviolet and visible parts of the solar spectrum,and(2)its BrunauereEmmetteTeller surface area and porosity were significantly enhanced.This led to increased photon absorption and dye adsorption,thus exhibiting an energy-efficient performance.Therefore,FAeZn,partly derived from waste,can serve as a suitable material for environmental remediation and practical solar energy applications.展开更多
文摘Treating waste with a waste material using freely available solar energy is the most effective way towards sustainable future.In this study,a novel photocatalyst,partly derived from waste material from the coal industry,was developed.Fly ash hybridized with ZnO(FAeZn)was synthesized as a potential photocatalyst for dye discoloration.The synthesized photocatalyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and ultravioletevisible/near infra-red spectroscopy.The photocatalytic activity was examined with the discoloration of methylene blue used as synthetic dye wastewater.All the experiments were performed in direct sunlight.The photocatalytic performance of FAeZn was found to be better than that of ZnO and the conventionally popular TiO2.The LangmuireHinshelwood model rate constant values of ZnO,TiO2,and FAeZn were found to be 0.016 min1,0.017 min1,and 0.020 min1,respectively.There were two reasons for this:(1)FAeZn was able to utilize both ultraviolet and visible parts of the solar spectrum,and(2)its BrunauereEmmetteTeller surface area and porosity were significantly enhanced.This led to increased photon absorption and dye adsorption,thus exhibiting an energy-efficient performance.Therefore,FAeZn,partly derived from waste,can serve as a suitable material for environmental remediation and practical solar energy applications.