Molecular dynamics simulation of a sympathetically-cooled ^(113)Cd^(+)ion crystal system is achieved.Moreover,the relationship between ions’axial temperature and different electric parameters,including radio frequenc...Molecular dynamics simulation of a sympathetically-cooled ^(113)Cd^(+)ion crystal system is achieved.Moreover,the relationship between ions’axial temperature and different electric parameters,including radio frequency voltage and endcap voltage is depicted.Under stable trapping condition,optimum radio frequency voltage,corresponding to minimum temperature and the highest cooling efficiency,is obtained.The temperature is positively correlated with end-cap voltage.The relationship is also confirmed by a sympathetically-cooled ^(113)Cd^(+) microwave clock.The pseudo-potential model is used to illustrate the relationship and influence mechanism.A reasonable index,indicating ions’temperature,is proposed to quickly estimate the relative ions’temperature.The investigation is helpful for ion crystal investigation,such as spatial configuration manipulation,sympathetic cooling efficiency enhancement,and temporal evolution.展开更多
基金Project supported by the Beijing Natural Science Foundation(Grant No.1202011)the Tsinghua University Initiative Scientific Research Program,the National Natural Science Foundation of China(Grant No.12073015)the National Key Research and Development Program of China(Grant No.2016YFA0302101).
文摘Molecular dynamics simulation of a sympathetically-cooled ^(113)Cd^(+)ion crystal system is achieved.Moreover,the relationship between ions’axial temperature and different electric parameters,including radio frequency voltage and endcap voltage is depicted.Under stable trapping condition,optimum radio frequency voltage,corresponding to minimum temperature and the highest cooling efficiency,is obtained.The temperature is positively correlated with end-cap voltage.The relationship is also confirmed by a sympathetically-cooled ^(113)Cd^(+) microwave clock.The pseudo-potential model is used to illustrate the relationship and influence mechanism.A reasonable index,indicating ions’temperature,is proposed to quickly estimate the relative ions’temperature.The investigation is helpful for ion crystal investigation,such as spatial configuration manipulation,sympathetic cooling efficiency enhancement,and temporal evolution.