Microbial electrosynthesis system (MES) is a promising method that can use carbon dioxide,which is a greenhouse gas,to produce methane which acts as an energy source,without using organic substances.However,this bioel...Microbial electrosynthesis system (MES) is a promising method that can use carbon dioxide,which is a greenhouse gas,to produce methane which acts as an energy source,without using organic substances.However,this bioelectrical reduction reaction can proceed at a certain high applied voltage when coupled with water oxidation in the anode coated with metallic catalyst.When coupled with the oxidation of HS–to SO_(4)^(2-),methane production is thermodynamically more feasible,thus implying its production at a considerably lower applied voltage.In this study,we demonstrated the possibility of electrotrophic methane production coupled with HS–oxidation in a cost-effective bioanode chamber in the MES without organic substrates at a low applied voltage of 0.2 V.In addition,microbial community analyses of biomass enriched in the bioanode and biocathode were used to reveal the most probable pathway for methane production from HS–oxidation.In the bioanode,electroautotrophic SO_(4)^(2-)production accompanied with electron donation to the electrode is performed mainly by the following two steps:first,incomplete sulfide oxidation to sulfur cycle intermediates (SCI) is performed;then the produced SCI are disproportionated to HS^(–)and SO_(4)^(2-).In the biocathode,methane is produced mainly via H_(2)and acetate by electronaccepting syntrophic bacteria,homoacetogens,and acetoclastic archaea.Here,a new ecofriendly MES with biological H_(2)S removal is established.展开更多
Biogas purification via water scrubbing produces effluent containing dissolved CH4, H2S,and CO2, which should be removed to reduce greenhouse gas emissions and increase its potential for water regeneration. In this st...Biogas purification via water scrubbing produces effluent containing dissolved CH4, H2S,and CO2, which should be removed to reduce greenhouse gas emissions and increase its potential for water regeneration. In this study, a reactor built with air supplies at the top and bottom was utilized for the treatment of biogas purification effluent through biological oxidation and physical stripping processes. Up to 98% of CH4 was removed through biological treatment at a hydraulic retention time of 2 hr and an upper airflow rate of 2.02 L/day. Additionally, a minimum CH4 concentration of 0.04% with no trace of H2S gas was detected in the off gas. Meanwhile, a white precipitate was captured on the carrier showing the formation of sulfur. According to the developed mathematical model, an upper airflow rate of greater than 2.02 L/day showed a small deterioration in CH4 removal performance after reaching the maximum value, whereas a 50 L/day bottom airflow rate was required to strip the CO2 efficiently and raise the effluent p H from 5.64 to 7.3. Microbiological analysis confirmed the presence of type 1 methanotroph communities dominated by Methylobacter and Methylocaldum. However, bacterial communities promoting sulfide oxidation were dominated by Hyphomicrobium.展开更多
Methane is produced in a microbial electrosynthesis system(MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions.In this study, we demonstrated that el...Methane is produced in a microbial electrosynthesis system(MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions.In this study, we demonstrated that electrotrophic methane production at the biocathode was achieved even at a very low voltage of 0.1 V in an MES, in which abiotic HS-oxidized to SO_(4)^(2-) at the anodic carbon-cloth surface coated with platinum powder. In addition, microbial community analysis revealed the most probable pathway for methane production from electrons. First, electrotrophic H_(2) was produced by syntrophic bacteria, such as Syntrophorhabdus, Syntrophobacter, Syntrophus, Leptolinea, and Aminicenantales, with the direct acceptance of electrons at the biocathode. Subsequently, most of the produced H_(2) was converted to acetate by homoacetogens, such as Clostridium and Spirochaeta 2. In conclusion,the majority of the methane was indirectly produced by a large population of acetoclastic methanogens, namely Methanosaeta, via acetate. Further, hydrogenotrophic methanogens,including Methanobacterium and Methanolinea, produced methane via H_(2).展开更多
基金supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (No. 17H01300)。
文摘Microbial electrosynthesis system (MES) is a promising method that can use carbon dioxide,which is a greenhouse gas,to produce methane which acts as an energy source,without using organic substances.However,this bioelectrical reduction reaction can proceed at a certain high applied voltage when coupled with water oxidation in the anode coated with metallic catalyst.When coupled with the oxidation of HS–to SO_(4)^(2-),methane production is thermodynamically more feasible,thus implying its production at a considerably lower applied voltage.In this study,we demonstrated the possibility of electrotrophic methane production coupled with HS–oxidation in a cost-effective bioanode chamber in the MES without organic substrates at a low applied voltage of 0.2 V.In addition,microbial community analyses of biomass enriched in the bioanode and biocathode were used to reveal the most probable pathway for methane production from HS–oxidation.In the bioanode,electroautotrophic SO_(4)^(2-)production accompanied with electron donation to the electrode is performed mainly by the following two steps:first,incomplete sulfide oxidation to sulfur cycle intermediates (SCI) is performed;then the produced SCI are disproportionated to HS^(–)and SO_(4)^(2-).In the biocathode,methane is produced mainly via H_(2)and acetate by electronaccepting syntrophic bacteria,homoacetogens,and acetoclastic archaea.Here,a new ecofriendly MES with biological H_(2)S removal is established.
基金supported by the Japan Society for the Promotion of Sciences as a Grant-in-Aid for Scientific Research(A)(grant number JP23241029)
文摘Biogas purification via water scrubbing produces effluent containing dissolved CH4, H2S,and CO2, which should be removed to reduce greenhouse gas emissions and increase its potential for water regeneration. In this study, a reactor built with air supplies at the top and bottom was utilized for the treatment of biogas purification effluent through biological oxidation and physical stripping processes. Up to 98% of CH4 was removed through biological treatment at a hydraulic retention time of 2 hr and an upper airflow rate of 2.02 L/day. Additionally, a minimum CH4 concentration of 0.04% with no trace of H2S gas was detected in the off gas. Meanwhile, a white precipitate was captured on the carrier showing the formation of sulfur. According to the developed mathematical model, an upper airflow rate of greater than 2.02 L/day showed a small deterioration in CH4 removal performance after reaching the maximum value, whereas a 50 L/day bottom airflow rate was required to strip the CO2 efficiently and raise the effluent p H from 5.64 to 7.3. Microbiological analysis confirmed the presence of type 1 methanotroph communities dominated by Methylobacter and Methylocaldum. However, bacterial communities promoting sulfide oxidation were dominated by Hyphomicrobium.
基金supported by the Japan Society for the Promotion of Science(JSPS)as a Grant-in-Aid for Scientific Research(No.17H01300)。
文摘Methane is produced in a microbial electrosynthesis system(MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions.In this study, we demonstrated that electrotrophic methane production at the biocathode was achieved even at a very low voltage of 0.1 V in an MES, in which abiotic HS-oxidized to SO_(4)^(2-) at the anodic carbon-cloth surface coated with platinum powder. In addition, microbial community analysis revealed the most probable pathway for methane production from electrons. First, electrotrophic H_(2) was produced by syntrophic bacteria, such as Syntrophorhabdus, Syntrophobacter, Syntrophus, Leptolinea, and Aminicenantales, with the direct acceptance of electrons at the biocathode. Subsequently, most of the produced H_(2) was converted to acetate by homoacetogens, such as Clostridium and Spirochaeta 2. In conclusion,the majority of the methane was indirectly produced by a large population of acetoclastic methanogens, namely Methanosaeta, via acetate. Further, hydrogenotrophic methanogens,including Methanobacterium and Methanolinea, produced methane via H_(2).