期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Solar-Driven Water Treatment: New Technologies, Challenges, and Futures
1
作者 Djamel Ghernaout Sara Irki +1 位作者 noureddine elboughdiri Badia Ghernaout 《Green and Sustainable Chemistry》 CAS 2023年第2期110-152,共43页
In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar de... In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar desalination technologies include solar-powered humidification–dehumidification, multi-stage flash desalination, multi-effect desalination, RO, and solar stills. Each technology’s productivity, energy consumption, and water production costs are presented. Also, common methods of solar water disinfection have been reviewed as one of the common and low-cost methods of water treatment, especially in areas with no access to drinking water. However, although desalination technologies have many social, economic, and public health benefits, they are energy-intensive and negatively affect the environment. In addition, the disposal of brine from the desalination processes is one of the most challenging and costly issues. In this regard, the environmental effects of desalination technologies are presented and discussed. Among direct solar water desalination technologies, solar still technology is a low-cost, low-tech, and low-investment method suitable for remote areas, especially in developing countries with low financial support and access to skilled workers. Indirect solar-driven water desalination technologies, including thermal and membrane technologies, are more reliable and technically more mature. Recently, RO technology has received particular attention thanks to its lower energy demand, lower cost, and available solutions to increase membrane durability. Disposal of brines can account for much of the water cost and potentially negatively affect the environment. Therefore, in addition to efforts to improve the efficiency and reduce the cost of solar technologies and water treatment processes, future research studies should consider developing new solutions to this issue. 展开更多
关键词 Renewable Energy (RE) Solar-Driven Desalination Solar Water Disinfection (SODIS) BRINE Greenhouse Gases (GHGs) Reverse Osmosis (RO)
下载PDF
Virus Removal by Iron Coagulation Processes
2
作者 Djamel Ghernaout noureddine elboughdiri +2 位作者 Badia Ghernaout Ghulam Abbas Ashraf Mhamed Benaissa 《Green and Sustainable Chemistry》 2023年第3期171-208,共38页
Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus... Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus charges as an efficient pre-treatment for reducing viruses. This work discusses the present-day studies on virus mitigation using coagulation in its three versions i.e., chemical coagulation (CC), enhanced coagulation, and electrocoagulation (EC), and debates the new results of virus demobilization. The complexity of viruses as bioparticles and the process of virus demobilization should be adopted, even if the contribution of permeability in virus sorption and aggregation needs to be clarified. The information about virion permeability has been evaluated by interpreting empirical electrophoretic mobility (EM). No practical measures of virion permeability exist, a clear link between permeability and virion composition and morphology has not been advanced, and the direct influence of inner virion structures on surface charge or sorption has yet to be conclusively demonstrated. CC setups utilizing zero-valent or ferrous iron could be killed by iron oxidation, possibly using EC and electrooxidation (EO) methods. The oxidants evolution in the iron oxidation method has depicted promising findings in demobilizing bacteriophage MS2, even if follow-up investigations employing an elution method are needed to secure that bacteriophage elimination is related to demobilization rather than sorption. As a perspective, we could be apt to anticipate virus conduct and determine new bacteriophage surrogates following subtle aspects such as protein structures or genome size and conformation. The present discussion’s advantages would extend far beyond an application in CC—from filtration setups to demobilization by nanoparticles to modeling virus fate and persistence in nature. 展开更多
关键词 Viruses Chemical Coagulation (CC) Enhanced Coagulation (EnC) Electrocoagulation (EC) Electrophoretic Mobility (EM) Natural Organic Matter (NOM)
下载PDF
Electrochemically and Ultrasonically-Enhanced Coagulation for Algae Removal
3
作者 Djamel Ghernaout noureddine elboughdiri 《Green and Sustainable Chemistry》 CAS 2023年第2期73-109,共37页
At the global level, the augmenting presence of harmful algae blooms constitutes important dares to water treatment plants (WTPs). In WTPs, coagulation remains the primary process of the applied procedure to treat alg... At the global level, the augmenting presence of harmful algae blooms constitutes important dares to water treatment plants (WTPs). In WTPs, coagulation remains the primary process of the applied procedure to treat algae-contaminated water. Such a chemical process influences the following techniques;thus, regulating coagulation parameters to eliminate algae at the maximum degree without provoking cell deterioration is more than crucial. This work aims to review coagulation-founded methods for algae elimination. First, investigations concentrating on algae elimination using the chemical process are discussed. The introduction presents the widespread algae encountered in the water treatment field. Then, habitually utilized experimental techniques and emerging methods in coagulation investigations are summarized with typical findings. Next, the newest expansions in improved algae elimination, launched by electrochemically and ultrasonically-enhanced coagulation, are discussed. Workable thoughts for applying coagulation to eliminate algae in WTPs are also debated. The paper finishes by defining restrictions and dares related to the present literature and suggesting trends for subsequent studies. The charge neutralization mechanism efficiently removes solubilized microcystins (MCs), and enhanced coagulation configuration is also found to be more efficient for their removal. However, considerations should be taken to avert that the acid introduction has no unwanted effect in killing algae treatment to avoid the solubilized MCs level elevation. If such techniques are well-optimized and controlled, both algae and solubilized MCs could be efficaciously removed by ultrasound-enhanced coagulation and electrocoagulation/electrooxidation. 展开更多
关键词 Harmful Algal Blooms (HABs) Electrocoagulation (EC) Electrooxidation (EO) Ultrasound (US) Machine Learning (ML) Reactive Oxygen Species (ROSs)
下载PDF
Electrolytic Co-Deposition Mechanisms, Texture Layers, and Residual Stresses in Nanocomposite Coatings Processes: A Review
4
作者 noureddine elboughdiri 《Advances in Chemical Engineering and Science》 CAS 2023年第2期79-92,共14页
The composite coating has gained wider attention due to its property to protect materials used in energy, bridges, offshore platforms, underground pipelines, and the aviation industry from corrosion and deterioration.... The composite coating has gained wider attention due to its property to protect materials used in energy, bridges, offshore platforms, underground pipelines, and the aviation industry from corrosion and deterioration. In this work, a literature review was conducted about the processes of nanocomposite coating, the mechanisms of electrolytic co-deposition, the texture of layers, and the residual stresses. An important aspect, residual stress, was emphasized, which represents the persistent stress after removing the external force affecting a metal in the plastic region. Because it cannot be measured directly and may be determined by measuring strain and indirect methods, the sources and methods for measuring residual stresses (XRD, SEM, TEM, EDS) were described in the last section to provide a comprehensive overview. Based on the thorough analysis of the published literature, it was concluded that nanoparticles could be electrodeposited with Ni on an Al substrate using a direct current and Ni sulfamate as an electrolytic solution, and Nickel will not reside on the oxide layer covering Al, so chemical changes are needed to prepare the Al surface. In addition, texture changes with the thickness of the coated layer must be investigated. 展开更多
关键词 NANOSTRUCTURE Nanoparticles CO-DEPOSITION TEXTURE Metal-Matrix Composites NICKEL
下载PDF
Optimization of the Degradation of Hydroquinone, Resorcinol and Catechol Using Response Surface Methodology
5
作者 noureddine elboughdiri Ammar Mahjoubi +2 位作者 Ali Shawabkeh Hussam Elddin Khasawneh Bassem Jamoussi 《Advances in Chemical Engineering and Science》 2015年第2期111-120,共10页
A clay catalyst (montmorillonite and kaolinite) was prepared and used to degrade three phenolic compounds: hydroquinone, resorcinol and catechol obtained from the treatment the Olive Mill Wastewater (OMW) generated in... A clay catalyst (montmorillonite and kaolinite) was prepared and used to degrade three phenolic compounds: hydroquinone, resorcinol and catechol obtained from the treatment the Olive Mill Wastewater (OMW) generated in the production of olive oil. The operating conditions of the degradation of these compounds are optimized by the response surface methodology (RSM) which is an experimental design used in process optimization studies. The results obtained by the catalytic tests and analyses performed by different techniques showed that the modified montmorillonites have very interesting catalytic, structural and textural properties;they are more effective for the catalytic phenolic compound degradation, they present the highest specific surface and they may support iron ions. We also determined the optimal degradation conditions by tracing the response surfaces of each compound;for example, for the catechol, the optimal conditions of degradation at pH 4 are obtained after 120 min at a concentration of H2O2 equal to 0.3 M. Of the three phenolic compounds, the kinetic degradation study revealed that the hydroquinone is the most degraded compound in the least amount of time. Finally, the rate of the catalyst iron ions release in the reaction is lower when the Fe-modified montmorillonites are used. 展开更多
关键词 Fenton Process Fe-Modified Clay PHENOLIC Compounds Response Surface Methodology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部