Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclea...Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclear magnetic resonance(NMR)displacement physical simulation and Lattice Boltzmann numerical simulation by using the samples of source rock,reservoir rock and crude oil.In continental lake basins,the dynamic forces driving hydrocarbon generation and expulsion of high-quality source rocks are the foundational power that determines the charging efficiency and accumulation effect of tight oil,the oil migration resistance is a key element that influences the charging efficiency and accumulation effect of tight oil,and the coupling of charging force with pore-throat resistance in tight reservoir controls the tight oil accumulation and sweet spot enrichment.The degree of tight oil enrichment in continental lake basins is controlled by four factors:source rock,reservoir pore-throat size,anisotropy of reservoir structure,and fractures.The high-quality source rocks control the near-source distribution of tight oil,reservoir physical properties and pore-throat size are positively correlated with the degree of tight oil enrichment,the anisotropy of reservoir structure reveals that the parallel migration rate is the highest,and intralayer fractures can improve the migration and accumulation efficiency and the oil saturation.展开更多
Based on core observation,cast and fluorescent thin sections,FESEM and ESEM,coquina in Da'anzhai Member of Jurassic in Sichuan Basin were examined systematically.Together with production data and logging evaluatio...Based on core observation,cast and fluorescent thin sections,FESEM and ESEM,coquina in Da'anzhai Member of Jurassic in Sichuan Basin were examined systematically.Together with production data and logging evaluation,a method for lacustrine coquina evaluation based on geological theory was established up.In the article,two aspects of the study were elaborated,characteristics of favorable reservoirs,and a"five-step"evaluation method for favorable coquina reservoir.According to the correlation between porosity and production data,porosity is not effective in finding high quality coquina reservoir of this area.Whereas micro research of reservoir samples from a high productivity well revealed that sparry coquina is the best lithofacies,with the most developed micro storage space of various kinds.After the favorable reservoir was sorted out,a five-step method evaluating the coquina reservoir was worked out.Correlation ofGR value and rock types suggests that GR<30 API is an effective evaluation parameter in identifying profitable reservoir lithofacies.Meanwhile,the combination of profitable reservoir rock thickness and production data revealed that the reservoirs with the highest potentiality are those with thickness of 3-18 m.Fractures are more developed in faults,folds and structural noses in the study area.Organic acid is discharged massively before the peak of hydrocarbon generation,leading to the formation of dissolution pores in the reservoir.The evaluation of organic acid was made by using the source rock indexes.After evaluating the four factors,and compiling their distribution maps,the maps were overlapped to predict favorable reservoir zones,and 7 first class and 9 second class favorable zones of coquina were picked out.展开更多
Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESE...Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESEM)and quantitative examination of pore size and geometry using mercury injection,nano-CT and nitrogen adsorption,reservoir rock of Da’anzhai Member were divided into 9 types,while storage spaces were divided into 4 types and 14 sub-types.The study shows that sparry coquina is the most promising reservoir type.Pores that smaller than 1μm in diameter contribute 91.27%of storage space volume.Most of them exhibit slot-like geometry with good connectivity.By building up storage space models,it was revealed that micron scale storage spaces mainly composed of fractures and nanometer scale pores and fractures form multi-scale dual porosity system.Low resource abundance,small single well controlled reserve,and low production are related to the nano-scale pore space in Da’anzhai Memer,whereas the dual-porosity system composed of pores and fractures makes for long-term oil yield.Due to the existence of abundant slot-like pore space and fractures,economic tight oil production was achieved without stimulations.展开更多
The Upper Carboniferous in northern Xinjiang, China was formed in a post-collisional depression and collapsed structural setting. Within the Upper Carboniferous, volcanic rocks and source rocks alternate over a wide r...The Upper Carboniferous in northern Xinjiang, China was formed in a post-collisional depression and collapsed structural setting. Within the Upper Carboniferous, volcanic rocks and source rocks alternate over a wide region. At the end of the Carboniferous, these layers were uplifted by plate collisions and subsequently weathered and leached. Volcanic weathering and leaching led to the establishment of weathered crusts that can be divided into five layers. Corrosion and crumble zones in these layers form favorable reservoirs. Volcanic weathering crust formed in sub-aerially exposed paleogeomorphic areas; the five relatively continuous layers are generally preserved in paleogeomorphic lowland and slope regions, but the upper soil layer is usually absent in structurally higher parts of the rock record. The thickness of the weathered layer has a positive nonlinear ex- ponential relationship to the duration of weathering and leaching, and the dynamic equilibrium time of weathered crust is about 36.3 Ma. The thickest weathered layer (~450 m) is located in fracture zones. Weathered crusts are possible from a range of volcanic rocks with different lithologies, given sufficient time for weathering and leaching. The combination of volcanic weathered crust and source rocks results in three types of hydrocarbon accumulation models: (1) sequences of volcanic weathered crust interbedded with source rocks, (2) a quasi-layered weathered volcanic core located above source rocks, and (3) volcanic rocks associated with pectinate unconformities adjacent to source rocks. Each of these three types has the potential to form a giant stratigraphic reservoir of volcanic weathered crust. This knowledge has changed the traditional exploration model of searching for favorable lithologic and lithofacies zones in volcanic rocks, and has changed the viewpoint that the Carboniferous does not have the genetic potential to be the basement of the basin in northern Xinjiang. The concepts developed here are of great scientific significance and application for focusing oil and gas exploration on volcanic weathered crust. As such, the Paleozoic volcanic weathered crust in the midwestern part of China may possibly contain large-scale stratigraphic reservoirs and thus could be a new oil and gas exploration target in the future.展开更多
基金Supported by the National Science and Technology Major Project of China(2016ZX05046-001).
文摘Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclear magnetic resonance(NMR)displacement physical simulation and Lattice Boltzmann numerical simulation by using the samples of source rock,reservoir rock and crude oil.In continental lake basins,the dynamic forces driving hydrocarbon generation and expulsion of high-quality source rocks are the foundational power that determines the charging efficiency and accumulation effect of tight oil,the oil migration resistance is a key element that influences the charging efficiency and accumulation effect of tight oil,and the coupling of charging force with pore-throat resistance in tight reservoir controls the tight oil accumulation and sweet spot enrichment.The degree of tight oil enrichment in continental lake basins is controlled by four factors:source rock,reservoir pore-throat size,anisotropy of reservoir structure,and fractures.The high-quality source rocks control the near-source distribution of tight oil,reservoir physical properties and pore-throat size are positively correlated with the degree of tight oil enrichment,the anisotropy of reservoir structure reveals that the parallel migration rate is the highest,and intralayer fractures can improve the migration and accumulation efficiency and the oil saturation.
基金the National Science and Technology Major Project of China(grant No.2016ZX05046-001)The authors w ish to acknow ledge the Southwest Oil&Gas field Company of PetroChina for providing the samples and their support in completing this study.
文摘Based on core observation,cast and fluorescent thin sections,FESEM and ESEM,coquina in Da'anzhai Member of Jurassic in Sichuan Basin were examined systematically.Together with production data and logging evaluation,a method for lacustrine coquina evaluation based on geological theory was established up.In the article,two aspects of the study were elaborated,characteristics of favorable reservoirs,and a"five-step"evaluation method for favorable coquina reservoir.According to the correlation between porosity and production data,porosity is not effective in finding high quality coquina reservoir of this area.Whereas micro research of reservoir samples from a high productivity well revealed that sparry coquina is the best lithofacies,with the most developed micro storage space of various kinds.After the favorable reservoir was sorted out,a five-step method evaluating the coquina reservoir was worked out.Correlation ofGR value and rock types suggests that GR<30 API is an effective evaluation parameter in identifying profitable reservoir lithofacies.Meanwhile,the combination of profitable reservoir rock thickness and production data revealed that the reservoirs with the highest potentiality are those with thickness of 3-18 m.Fractures are more developed in faults,folds and structural noses in the study area.Organic acid is discharged massively before the peak of hydrocarbon generation,leading to the formation of dissolution pores in the reservoir.The evaluation of organic acid was made by using the source rock indexes.After evaluating the four factors,and compiling their distribution maps,the maps were overlapped to predict favorable reservoir zones,and 7 first class and 9 second class favorable zones of coquina were picked out.
基金Supported by the China National Science and Technology Major Project(2016ZX05046-001)
文摘Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESEM)and quantitative examination of pore size and geometry using mercury injection,nano-CT and nitrogen adsorption,reservoir rock of Da’anzhai Member were divided into 9 types,while storage spaces were divided into 4 types and 14 sub-types.The study shows that sparry coquina is the most promising reservoir type.Pores that smaller than 1μm in diameter contribute 91.27%of storage space volume.Most of them exhibit slot-like geometry with good connectivity.By building up storage space models,it was revealed that micron scale storage spaces mainly composed of fractures and nanometer scale pores and fractures form multi-scale dual porosity system.Low resource abundance,small single well controlled reserve,and low production are related to the nano-scale pore space in Da’anzhai Memer,whereas the dual-porosity system composed of pores and fractures makes for long-term oil yield.Due to the existence of abundant slot-like pore space and fractures,economic tight oil production was achieved without stimulations.
基金supported by National S&T Major Project (Grant No. 2008ZX05001)Major Brainstorm Project of CNPC-provided Financial Aid (Grant No. 06-01A-01-01)
文摘The Upper Carboniferous in northern Xinjiang, China was formed in a post-collisional depression and collapsed structural setting. Within the Upper Carboniferous, volcanic rocks and source rocks alternate over a wide region. At the end of the Carboniferous, these layers were uplifted by plate collisions and subsequently weathered and leached. Volcanic weathering and leaching led to the establishment of weathered crusts that can be divided into five layers. Corrosion and crumble zones in these layers form favorable reservoirs. Volcanic weathering crust formed in sub-aerially exposed paleogeomorphic areas; the five relatively continuous layers are generally preserved in paleogeomorphic lowland and slope regions, but the upper soil layer is usually absent in structurally higher parts of the rock record. The thickness of the weathered layer has a positive nonlinear ex- ponential relationship to the duration of weathering and leaching, and the dynamic equilibrium time of weathered crust is about 36.3 Ma. The thickest weathered layer (~450 m) is located in fracture zones. Weathered crusts are possible from a range of volcanic rocks with different lithologies, given sufficient time for weathering and leaching. The combination of volcanic weathered crust and source rocks results in three types of hydrocarbon accumulation models: (1) sequences of volcanic weathered crust interbedded with source rocks, (2) a quasi-layered weathered volcanic core located above source rocks, and (3) volcanic rocks associated with pectinate unconformities adjacent to source rocks. Each of these three types has the potential to form a giant stratigraphic reservoir of volcanic weathered crust. This knowledge has changed the traditional exploration model of searching for favorable lithologic and lithofacies zones in volcanic rocks, and has changed the viewpoint that the Carboniferous does not have the genetic potential to be the basement of the basin in northern Xinjiang. The concepts developed here are of great scientific significance and application for focusing oil and gas exploration on volcanic weathered crust. As such, the Paleozoic volcanic weathered crust in the midwestern part of China may possibly contain large-scale stratigraphic reservoirs and thus could be a new oil and gas exploration target in the future.