In this study was to investigate, by phase-transfer catalysis, the activity of single and mixed ammonium and phosphonium salts grafted on a 揼el-type?styrene-7% divinylbenzene copolymer in the oxidation of benzyl alco...In this study was to investigate, by phase-transfer catalysis, the activity of single and mixed ammonium and phosphonium salts grafted on a 揼el-type?styrene-7% divinylbenzene copolymer in the oxidation of benzyl alcohol with hydrogen peroxide. A wide variety of catalysts with different quaternary groups and different quaternary chain length substituents were examined. The activity of single 搊nium?salts increases as a consequence of the association of ammonium and phosphonium salts grafted on the same polymeric support. The activity of polymer-supported ammonium and phosphonium salts increases with the number of carbon atoms contained in the alkyl radicals of the onium and of the functionalization degree with phosphonium groups.展开更多
文摘In this study was to investigate, by phase-transfer catalysis, the activity of single and mixed ammonium and phosphonium salts grafted on a 揼el-type?styrene-7% divinylbenzene copolymer in the oxidation of benzyl alcohol with hydrogen peroxide. A wide variety of catalysts with different quaternary groups and different quaternary chain length substituents were examined. The activity of single 搊nium?salts increases as a consequence of the association of ammonium and phosphonium salts grafted on the same polymeric support. The activity of polymer-supported ammonium and phosphonium salts increases with the number of carbon atoms contained in the alkyl radicals of the onium and of the functionalization degree with phosphonium groups.