Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located...Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.展开更多
As a common phenomenon in granular flow, grain segregation plays a great role in affecting the behavior of granular soil by causing a great change of grain-void distribution in granular soil. This paper presents an ex...As a common phenomenon in granular flow, grain segregation plays a great role in affecting the behavior of granular soil by causing a great change of grain-void distribution in granular soil. This paper presents an experimental study on the influence of grain segregation on the behavior of sand, by a number of triaxial tests to interpret the characteristic behavior, friction and dilatancy behavior, excess pore water pressure behavior and critical state behavior of sand incorporating grain segregation. An index-grain segregation index was proposed to quantify grain segregation. Grain segregation affected greatly the characteristic behavior of sand, causing the movement of void ratio-dilatancy relation of sand towards the increase of void ratio and dilatancy of sand. In the drained tests, the mobilized friction angle of sand showed a decrease followed by an increase but the mobilized dilatancy angle of sand increased, with increasing grain segregation index. An increase in grain segregation index impaired the basic friction of sand. In the undrained tests, the mobilized friction angle of sand showed an increase followed by a decrease with increasing grain segregation index. However, grain segregation caused an increase of the mobilized dilatancy of sand followed by a different development. An increase in grain segregation resulted in a higher summit of the dilatancy of sand but with a faster decrease along axial strain. In the q-p′ plane, grain segregation caused a reciprocating rotation of the dilatancy line and failure line of sand. Grain segregation resulted in enhancement of the peak-state dilatancy of sand, affecting greatly peakstate friction angle and peak-state basic friction angle of sand as well as the normalized excess pore water pressure. The excess friction angle of sand showed an increase followed by a decrease in the drained tests but increased linearly in the undrained tests, with increasing grain segregation index. The excess friction angle-over-maximum dilatancy angle of sand decreased in up convexity while increasing grain segregation index. Grain segregation resulted in rotation and translation of the critical state line of sand in the e-p′α=0.7 plane. However, in the q-p′ plane, the critical state line of sand showed an anticlockwise rotation followed by a clockwise rotation with increasing grain segregation index.展开更多
Particle breakage is a theme of great focus on affecting the behavior of granular soil.This paper presents an experimental investigation on the influence of particle breakage on the isotropic compressibility of the pr...Particle breakage is a theme of great focus on affecting the behavior of granular soil.This paper presents an experimental investigation on the influence of particle breakage on the isotropic compressibility of the precrushed sands using a number of drained isotropic consolidation tests.Particle breakage resulted in movement of the compression lines followed by the rebound lines towards a decrease in the void ratio,implying that particle breakage caused a more contractive soil.Particle breakage impaired the bulk deformation modulus by increasing the compression coefficient for the compression behavior of the precrushed sands,but showed a complex effect on the bulk deformation modulus and rebound coefficient for the rebound behavior of the precrushed sands.However,particle breakage caused an increase in the compression indexes of the precrushed sands but showed a complex effect on the rebound indexes of the precrushed sands.In the e-p’plane and the e-logp’plane,the compression lines and rebound lines of the precrushed sands were curved.A generalized model was proposed to straighten the compression and rebound lines of the precrushed sands in the e-(p’p_(a))^(α) plane.Particle breakage resulted in a general rotation and translation of the linear compression and rebound lines of the precrushed sands in the e-(p’p_(a))^(α)plane.The critical state line and isotropic consolidation line on the loosest state of silica sand no.5 were curved in the e-logp’plane but straightened in the e-p’^(α=0.7) plane.In the e-p’^(α=0.7 )plane,a reasonable linear critical state line of silica sand no.5 was proposed by adjusting it to match the isotropic consolidation line on the loosest state.展开更多
基金supported by the "Light of West China" Program of Chinese Academy of Sciences (Grant No.Y6R2250250)the National Basic Research Program of China (973 Program, Grant No.2013CB733201)+2 种基金the One-Hundred Talents Program of Chinese Academy of Sciences (LijunSu)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No.QYZDB-SSW-DQC010)the Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.
基金supported by the National Natural Science Foundation of China (Grant no.41807268)the Major Program of National Natural Science Foundation of China (Grant no.41790432)the Youth Innovation Promotion Association of the Chinese Academy of Sciences,China (Grant no.2018408)。
文摘As a common phenomenon in granular flow, grain segregation plays a great role in affecting the behavior of granular soil by causing a great change of grain-void distribution in granular soil. This paper presents an experimental study on the influence of grain segregation on the behavior of sand, by a number of triaxial tests to interpret the characteristic behavior, friction and dilatancy behavior, excess pore water pressure behavior and critical state behavior of sand incorporating grain segregation. An index-grain segregation index was proposed to quantify grain segregation. Grain segregation affected greatly the characteristic behavior of sand, causing the movement of void ratio-dilatancy relation of sand towards the increase of void ratio and dilatancy of sand. In the drained tests, the mobilized friction angle of sand showed a decrease followed by an increase but the mobilized dilatancy angle of sand increased, with increasing grain segregation index. An increase in grain segregation index impaired the basic friction of sand. In the undrained tests, the mobilized friction angle of sand showed an increase followed by a decrease with increasing grain segregation index. However, grain segregation caused an increase of the mobilized dilatancy of sand followed by a different development. An increase in grain segregation resulted in a higher summit of the dilatancy of sand but with a faster decrease along axial strain. In the q-p′ plane, grain segregation caused a reciprocating rotation of the dilatancy line and failure line of sand. Grain segregation resulted in enhancement of the peak-state dilatancy of sand, affecting greatly peakstate friction angle and peak-state basic friction angle of sand as well as the normalized excess pore water pressure. The excess friction angle of sand showed an increase followed by a decrease in the drained tests but increased linearly in the undrained tests, with increasing grain segregation index. The excess friction angle-over-maximum dilatancy angle of sand decreased in up convexity while increasing grain segregation index. Grain segregation resulted in rotation and translation of the critical state line of sand in the e-p′α=0.7 plane. However, in the q-p′ plane, the critical state line of sand showed an anticlockwise rotation followed by a clockwise rotation with increasing grain segregation index.
基金supported by the National Natural Science Foundation of China(Grant no.41807268)the Youth Innovation Promotion Association of the Chinese Academy of Sciences-China(Grant no.2018408)。
文摘Particle breakage is a theme of great focus on affecting the behavior of granular soil.This paper presents an experimental investigation on the influence of particle breakage on the isotropic compressibility of the precrushed sands using a number of drained isotropic consolidation tests.Particle breakage resulted in movement of the compression lines followed by the rebound lines towards a decrease in the void ratio,implying that particle breakage caused a more contractive soil.Particle breakage impaired the bulk deformation modulus by increasing the compression coefficient for the compression behavior of the precrushed sands,but showed a complex effect on the bulk deformation modulus and rebound coefficient for the rebound behavior of the precrushed sands.However,particle breakage caused an increase in the compression indexes of the precrushed sands but showed a complex effect on the rebound indexes of the precrushed sands.In the e-p’plane and the e-logp’plane,the compression lines and rebound lines of the precrushed sands were curved.A generalized model was proposed to straighten the compression and rebound lines of the precrushed sands in the e-(p’p_(a))^(α) plane.Particle breakage resulted in a general rotation and translation of the linear compression and rebound lines of the precrushed sands in the e-(p’p_(a))^(α)plane.The critical state line and isotropic consolidation line on the loosest state of silica sand no.5 were curved in the e-logp’plane but straightened in the e-p’^(α=0.7) plane.In the e-p’^(α=0.7 )plane,a reasonable linear critical state line of silica sand no.5 was proposed by adjusting it to match the isotropic consolidation line on the loosest state.