虽然月球是除地球以外人类探测最为频繁的目标天体之一,但是月球空间环境仍然是未解之谜。美国国家航空航天局(National Aeronautics and Space Administration,NASA)的“阿波罗”(Apollo)系列、“勘测者”(Surveyor)系列、“阿尔忒弥斯...虽然月球是除地球以外人类探测最为频繁的目标天体之一,但是月球空间环境仍然是未解之谜。美国国家航空航天局(National Aeronautics and Space Administration,NASA)的“阿波罗”(Apollo)系列、“勘测者”(Surveyor)系列、“阿尔忒弥斯”(Artemis)任务、月球大气和粉尘环境探测器(Lunar Atmosphere and Dust Environment Explorer,LADEE),前苏联的“月球”(Luna)系列探测任务均进行了(或计划进行)月面就位探测,提供了一些月球电磁环境和月尘的信息;历次月球探测任务中的无线电观测提供了部分关于月球等离子体环境的信息。本文首先对当前月球空间环境研究进展和存在的问题进行介绍;其次,探讨了日、地对月球空间环境的可能影响;最后,基于“嫦娥四号”中继星及着陆器搭载的甚低频射电探测载荷,对未来月球空间环境研究及其探测进行了展望。展开更多
The tropopause has a complex structure and some interference information may exist in high-resolution global positioning system (GPS)/low earth-orbiting (LEO) radio occultation (RO) data. The position of the tro...The tropopause has a complex structure and some interference information may exist in high-resolution global positioning system (GPS)/low earth-orbiting (LEO) radio occultation (RO) data. The position of the tropopause cannot be accurately determined using traditional cold point tropopause (CPT) and lapse rate tropopause (LRT) algorithms. In this paper, an integrative algorithm is developed to determinate tropopause parameters. The algorithm is applied to GPS/COSMIC RO data to obtain a global distribution of the height and temperature of the tropopause. This algorithm improves the utilization rate of GPS/LEO RO data by 30% compared with that from the traditional CPT method. The rationality and reliability of GPS/LEO RO data in probing the Earth's atmosphere are verified by our study of the tropopause using COSMIC data.展开更多
目前广泛应用的月球统一控制网2005(Unified Lunar Control Network 2005,ULCN2005)是由1994年的克莱门汀(Clementine)影像和之前的遥感数据联合平差构建的。提出利用21世纪获取的分辨率更高、精度更好的多探测任务数据,建立新一代月球...目前广泛应用的月球统一控制网2005(Unified Lunar Control Network 2005,ULCN2005)是由1994年的克莱门汀(Clementine)影像和之前的遥感数据联合平差构建的。提出利用21世纪获取的分辨率更高、精度更好的多探测任务数据,建立新一代月球控制网的方案与关键技术。该方案基于全球覆盖的月球遥感影像与激光高度计数据的联合平差,同时利用在月球轨道侦察器窄角相机影像上能高精度定位的绝对定位精度在厘米级的5个激光棱角反射标志点作为绝对控制。此外,还通过新的无线电测量方法对嫦娥三号着陆器进行高精度定位,将其定位结果也作为一个新的绝对控制数据。新一代控制网构建的重点有高精度的轨道器严密及通用成像几何模型的构建、多任务多模态数据间的多尺度特征提取与匹配、最优化多重覆盖影像的选择、全月球整体平差等。基于新的数据和技术,新一代月球控制网的精度和点的密度有望远超ULCN2005。展开更多
More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spher...More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spherical harmonic expansion of the lunar radii, is designated as Chang’E-1 Lunar Topography Model s01 (CLTM-s01). This topographic field, referenced to a mean radius of 1738 km, has an absolute vertical accuracy of approximately 31 m and a spatial resolution of 0.25° (~7.5 km). This new lunar topographic model has greatly improved previous models in spatial coverage, accuracy and spatial resolution, and also shows the polar regions with the altimeter results for the first time. From CLTM-s01, the mean, equatorial, and polar radii of the Moon are 1737103, 1737646, and 1735843 m, respectively. In the lunar-fixed coordinate system, this model shows a COM/COF offset to be (?1.777, ?0.730, 0.237) km along the x, y, and z directions, respectively. All the basic lunar shape parameters derived from CLTM-s01 are in agreement with the results of Clementine GLTM2, but CLTM-s01 offers higher accuracy and reliability due to its better global samplings.展开更多
In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized t...In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.展开更多
文摘虽然月球是除地球以外人类探测最为频繁的目标天体之一,但是月球空间环境仍然是未解之谜。美国国家航空航天局(National Aeronautics and Space Administration,NASA)的“阿波罗”(Apollo)系列、“勘测者”(Surveyor)系列、“阿尔忒弥斯”(Artemis)任务、月球大气和粉尘环境探测器(Lunar Atmosphere and Dust Environment Explorer,LADEE),前苏联的“月球”(Luna)系列探测任务均进行了(或计划进行)月面就位探测,提供了一些月球电磁环境和月尘的信息;历次月球探测任务中的无线电观测提供了部分关于月球等离子体环境的信息。本文首先对当前月球空间环境研究进展和存在的问题进行介绍;其次,探讨了日、地对月球空间环境的可能影响;最后,基于“嫦娥四号”中继星及着陆器搭载的甚低频射电探测载荷,对未来月球空间环境研究及其探测进行了展望。
基金supported by the Chinese Polar Science Strategy Research Fund Project(Grant no.20100204)
文摘The tropopause has a complex structure and some interference information may exist in high-resolution global positioning system (GPS)/low earth-orbiting (LEO) radio occultation (RO) data. The position of the tropopause cannot be accurately determined using traditional cold point tropopause (CPT) and lapse rate tropopause (LRT) algorithms. In this paper, an integrative algorithm is developed to determinate tropopause parameters. The algorithm is applied to GPS/COSMIC RO data to obtain a global distribution of the height and temperature of the tropopause. This algorithm improves the utilization rate of GPS/LEO RO data by 30% compared with that from the traditional CPT method. The rationality and reliability of GPS/LEO RO data in probing the Earth's atmosphere are verified by our study of the tropopause using COSMIC data.
文摘目前广泛应用的月球统一控制网2005(Unified Lunar Control Network 2005,ULCN2005)是由1994年的克莱门汀(Clementine)影像和之前的遥感数据联合平差构建的。提出利用21世纪获取的分辨率更高、精度更好的多探测任务数据,建立新一代月球控制网的方案与关键技术。该方案基于全球覆盖的月球遥感影像与激光高度计数据的联合平差,同时利用在月球轨道侦察器窄角相机影像上能高精度定位的绝对定位精度在厘米级的5个激光棱角反射标志点作为绝对控制。此外,还通过新的无线电测量方法对嫦娥三号着陆器进行高精度定位,将其定位结果也作为一个新的绝对控制数据。新一代控制网构建的重点有高精度的轨道器严密及通用成像几何模型的构建、多任务多模态数据间的多尺度特征提取与匹配、最优化多重覆盖影像的选择、全月球整体平差等。基于新的数据和技术,新一代月球控制网的精度和点的密度有望远超ULCN2005。
基金Supported by the National Natural Science Foundation of China (Grant Nos 2008AA12A209 and 2008AA12A210)supported by Chang'E-1 monitoring and control systems, scientific applications system and the satellite systemssupported by the knowledge innovation project the "Hun-dred Excellent Project" of Chinese Academy of Sciences
文摘More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spherical harmonic expansion of the lunar radii, is designated as Chang’E-1 Lunar Topography Model s01 (CLTM-s01). This topographic field, referenced to a mean radius of 1738 km, has an absolute vertical accuracy of approximately 31 m and a spatial resolution of 0.25° (~7.5 km). This new lunar topographic model has greatly improved previous models in spatial coverage, accuracy and spatial resolution, and also shows the polar regions with the altimeter results for the first time. From CLTM-s01, the mean, equatorial, and polar radii of the Moon are 1737103, 1737646, and 1735843 m, respectively. In the lunar-fixed coordinate system, this model shows a COM/COF offset to be (?1.777, ?0.730, 0.237) km along the x, y, and z directions, respectively. All the basic lunar shape parameters derived from CLTM-s01 are in agreement with the results of Clementine GLTM2, but CLTM-s01 offers higher accuracy and reliability due to its better global samplings.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10973031, 10778635 and 10973030)the Chinese Lunar Exploration Project (Chang’E-1), STC of Shanghai Municipality (Grant No. 06DZ22101)+1 种基金the CAS Key Research Program (Grant No. KJCX2-YW-T13-2)the National High Technology Research and Development Program of China (Grant Nos. 2008AA12A209 and 2008AA12A210)
文摘In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.