This paper presents a new three-phase hybrid active power filter configuration that interconnects a passive high-pass filter in parallel with an active power filter and a photovoltaic system. The proposed configuratio...This paper presents a new three-phase hybrid active power filter configuration that interconnects a passive high-pass filter in parallel with an active power filter and a photovoltaic system. The proposed configuration can improves the filtering performance of the conventional active power filter, as well as simultaneously supply the power from the photovoltaic arrays to the load and utility. This paper will describe the proposed hybrid active power filter control using sliding mode with photovoltaic system. The proposed technique effectively filters harmonics under 1 kHz but also higher frequency to achieve wideband harmonics compensation. The THD of source current is reduced from 30.09% to 1.95%. The result indicates that the sliding mode controller can track the reference signals and have good dynamic characteristics.展开更多
This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are...This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are proposed and trained with signal sets that arc generated from real harmonic waveforms. After training, each trained MLP is able to identify the two coefficients of each harmonic term of the input signal. The effectiveness of the new approach is evaluated by two experiments and is also compared to another recent MLP method. Experimental results show that the proposed MLPs approach enables to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. The new approach can be applied in harmonic compensation strategies with an active power filter to ensure power quality issues in electrical power systems.展开更多
A non-linear optimal(H-infinity)control approach is proposed for the dynamic model of multi-degree-of-freedom(DOF)electro-hydraulic robotic manipulators.Control of electro-hydraulic manipulators is a non-trivial probl...A non-linear optimal(H-infinity)control approach is proposed for the dynamic model of multi-degree-of-freedom(DOF)electro-hydraulic robotic manipulators.Control of electro-hydraulic manipulators is a non-trivial problem because of their non-linear and multi-variable dynamics.In this study,the considered robotic system consists of a multi-link robotic manipulator that receives actuation from rotary electro-hydraulic drives.The article's approach relies first on approximate linearisation of the state-space model of the electro-hydraulic manipulator,according to first-order Taylor series expansion and the computation of the related Jacobian matrices.For the approximately linearised model of the manipulator,a stabilising H-infinity feedback controller is designed.To compute the controller's gains,an algebraic Riccati equation is solved at each time-step of the control algorithm.The global stability properties of the control scheme are proven through Lyapunov analysis.The proposed control method retains the advantages of typical optimal control,i.e.fast and accurate tracking of the reference setpoints under moderate variations of the control inputs.展开更多
文摘This paper presents a new three-phase hybrid active power filter configuration that interconnects a passive high-pass filter in parallel with an active power filter and a photovoltaic system. The proposed configuration can improves the filtering performance of the conventional active power filter, as well as simultaneously supply the power from the photovoltaic arrays to the load and utility. This paper will describe the proposed hybrid active power filter control using sliding mode with photovoltaic system. The proposed technique effectively filters harmonics under 1 kHz but also higher frequency to achieve wideband harmonics compensation. The THD of source current is reduced from 30.09% to 1.95%. The result indicates that the sliding mode controller can track the reference signals and have good dynamic characteristics.
文摘This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are proposed and trained with signal sets that arc generated from real harmonic waveforms. After training, each trained MLP is able to identify the two coefficients of each harmonic term of the input signal. The effectiveness of the new approach is evaluated by two experiments and is also compared to another recent MLP method. Experimental results show that the proposed MLPs approach enables to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. The new approach can be applied in harmonic compensation strategies with an active power filter to ensure power quality issues in electrical power systems.
文摘A non-linear optimal(H-infinity)control approach is proposed for the dynamic model of multi-degree-of-freedom(DOF)electro-hydraulic robotic manipulators.Control of electro-hydraulic manipulators is a non-trivial problem because of their non-linear and multi-variable dynamics.In this study,the considered robotic system consists of a multi-link robotic manipulator that receives actuation from rotary electro-hydraulic drives.The article's approach relies first on approximate linearisation of the state-space model of the electro-hydraulic manipulator,according to first-order Taylor series expansion and the computation of the related Jacobian matrices.For the approximately linearised model of the manipulator,a stabilising H-infinity feedback controller is designed.To compute the controller's gains,an algebraic Riccati equation is solved at each time-step of the control algorithm.The global stability properties of the control scheme are proven through Lyapunov analysis.The proposed control method retains the advantages of typical optimal control,i.e.fast and accurate tracking of the reference setpoints under moderate variations of the control inputs.