期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Regulation of Growth, Antioxidants and Sugar Metabolism in Rice (Oryza sativa L.) Seedlings by NaCl and Its Reversal by Silicon 被引量:1
1
作者 Prabal Das paulin seal Asok K. Biswas 《American Journal of Plant Sciences》 2016年第3期623-638,共16页
The effect of NaCl with or without silicon on the growth and metabolism in rice seedlings cv. MTU1010 was studied. In these seedlings, the oxidative stress has been observed with NaCl treatments and the levels of prol... The effect of NaCl with or without silicon on the growth and metabolism in rice seedlings cv. MTU1010 was studied. In these seedlings, the oxidative stress has been observed with NaCl treatments and the levels of proline, H<sub>2</sub>O<sub>2</sub> and malondialdehyde contents were increased whereas catalase activity was decreased. NaCl exposure at 25 mM, 50 mM and 100 mM concentrations in the test seedlings resulted in an increase in both reducing and non-reducing sugar content. There was a decrease in starch contents and the activity of starch phosphorylase was increased. NaCl stress also affected the activities of different carbohydrate metabolizing enzymes. The activities of sucrose synthase and sucrose phosphate synthase were increased, while the activity of acid invertase was decreased. Joint application of silicon with NaCl showed significant alterations on all parameters tested under the purview of NaCl treatment alone leading to better growth and metabolism in rice seedlings. Thus the use of silicon enriched fertilizers may help to grow healthy rice plants in NaCl rich soil. 展开更多
关键词 RICE NACL SILICON Antioxidant Sugar Metabolism
下载PDF
Versatile Potentiality of Silicon in Mitigation of Biotic and Abiotic Stresses in Plants: A Review 被引量:3
2
作者 paulin seal Prabal Das Asok K. Biswas 《American Journal of Plant Sciences》 2018年第7期1433-1454,共22页
The “quasi-essential element” silicon (Si) is not considered indispensable for plant growth and its accumulation varies between species largely due to differential uptake phenomena. Silicon uptake and distribution i... The “quasi-essential element” silicon (Si) is not considered indispensable for plant growth and its accumulation varies between species largely due to differential uptake phenomena. Silicon uptake and distribution is a complex process involving the participation of three transporters (Lsi1, Lsi2 and Lsi6) and is beneficial during recovery from multiple stresses. This review focuses on the pivotal role of silicon in counteracting several biotic and abiotic stresses including nutrient imbalances, physical stresses together with uptake, transport of this metalloid in a wide variety of dicot and monocot species. The knowledge on the beneficial effects of silicon and possible Si-induced mechanisms of minimizing stress has been discussed. Accumulation of silicon beneath the cuticles fortifies the cell wall against pathogen attack. Si-induced reduction of heavy metal uptake, root-shoot translocation, chelation, complexation, upregulation of antioxidative defense responses and regulation of gene expression are the mechanisms involved in alleviation of heavy metal toxicity in plants. Silicon further improves growth and physiological attributes under salt and drought stress. Effective use of silicon in agronomy can be an alternative to the prevalent practice of traditional fertilizers for maintaining sustainable productivity. Therefore, soil nutrition with fertilizers containing plant-available silicon may be considered a cost-effective way to shield plant from various stresses, improve plant growth as well as yield and attain sustainable cultivation worldwide. 展开更多
关键词 ABIOTIC STRESS Alleviation Biotic STRESS SILICON SILICON TRANSPORTER
下载PDF
Influence of Selenium on Growth, Antioxidants Production and Physiological Parameters of Rice (<i>Oryza sativa</i>L.) Seedlings and Its Possible Reversal by Coapplication of Sulphate
3
作者 Debarati Das paulin seal Asok K. Biswas 《American Journal of Plant Sciences》 2019年第12期2236-2278,共43页
The effect of selenate (Na2SeO4) and sulphate (Na2SO4) was studied on growth and metabolism in two rice cultivars cv. satabdi and cv. khitish. Selenate at low concentration (2 μM) expressed growth promoting effect on... The effect of selenate (Na2SeO4) and sulphate (Na2SO4) was studied on growth and metabolism in two rice cultivars cv. satabdi and cv. khitish. Selenate at low concentration (2 μM) expressed growth promoting effect on rice seedlings as opposed to its high concentration (≥20 μM) where the test seedlings showed stunted growth with browning at the apices of both roots and shoots. The chlorophyll contents showed a dose dependent effect. Both chlorophyll a and chlorophyll b contents were inhibited with increase in selenate concentrations. The effect was more pronounced in cv. satabdi compared to cv. khitish.The level of accessory pigments was deferentially affected by selenium treatment. Simultaneously, the fluorescence intensity and Hill activity decreased with increase in selenate concentrations in the test seedlings. It is assumed that selenium plays a protective role in plants subjected to stress and prevents the formation of reactive oxygen species (ROS) in the cells. Higher selenate concentrations (≥20 μM) exerted variable effect on the activities of enzymatic antioxidants viz.;superoxide dismutase (SOD), catechol peroxidase (CPX) and catalase (CAT) in the test seedlings. The activity of SOD increased with increase in selenate concentrations, whereas activities of CAT and CPX decreased. Under high selenate concentrations, the levels of oxidative stress markers, viz.;proline, H2O2 and MDA were also enhanced. Selenium induced accumulation of total soluble sugar and increased the level of both reducing and non reducing sugars in both the test cultivars. The starch contents concomitantly decreased with rise in selenate concentrations. Moreover, the nutrient contents of test seedlings were significantly influenced by selenium. The Na and K levels gradually increased whereas Ca, Mg and Fe levels decreased on application of selenate. Joint application of 10 mM sulphate and selenate showed significant alterations on all parameters tested with respect to selenate treatment alone. Partial to complete amelioration occurred in the test seedlings treated with high concentrations of selenate and sulphate. Our study shows that selenium at low concentration had a stimulatory effect on growth and metabolism as against high concentrations which proved to be toxic to the rice seedlings obtained from both the cultivars. Effects were more pronounced in cv. satabdi than in cv. khitish which is considered to be comparatively tolerant to selenium. The dose dependent influence of selenium on the physiological and biochemical responses of test seedlings may be reversed by co-application with sulphate. 展开更多
关键词 RICE SELENATE Sulphate GROWTH Biochemical Changes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部