期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhancing the Combustion Performance of Metastable Al@AP/PVDF Nanocomposites by Doping with Graphene Oxide 被引量:10
1
作者 Shuwen Chen De-Yun Tang +4 位作者 Xue-Xue Zhang Jie-Yao Lyu Wei He peijin liu Qi-Long Yan 《Engineering》 SCIE EI 2020年第9期1151-1160,共10页
利用喷雾造粒技术制备了一类新型的亚稳态分子间复合含能材料(metastable intermixed composite,MIC)。这种复合材料由铝(Al)、高氯酸铵(ammonium perchlorate, AP)和聚偏氟乙烯(polyvinylidene fluoride, PVDF)组成,其中Al作为燃料,AP... 利用喷雾造粒技术制备了一类新型的亚稳态分子间复合含能材料(metastable intermixed composite,MIC)。这种复合材料由铝(Al)、高氯酸铵(ammonium perchlorate, AP)和聚偏氟乙烯(polyvinylidene fluoride, PVDF)组成,其中Al作为燃料,AP和PVDF共同作为氧化剂,并根据最大反应放热量确定AP和PVDF的添加比例。此外,在材料中还掺杂了少量的氧化石墨烯(graphene oxide, GO)充当润滑剂和催化剂。结果表明,含有0.2%氧化石墨烯的Al@AP/PVDF具有最大的密度(2.57 g·cm^-3)和最高的反应放热量(5999.5 J·g^-1)。这些值远高于Al@AP/PVDF的密度(2.00 g·cm^-3)和反应放热量(5569.8 J·g^-1)。氧化石墨烯的加入提高了Al@AP/PVDF的反应速率并改善了其热稳定性。掺杂0.2%氧化石墨烯的Al@AP/PVDF使得火焰传播速率达到了4.76 m·s^-1,相对于Al@AP/PVDF的火焰传播速率提高了约10.7%。掺杂氧化石墨烯的Al@AP/PVDF(Al@AP/PVDF-GO)具有更好的界面接触和颗粒分散性,从而提高了传热速率,消除了纳米铝(nano-Al)粉微粒的团聚现象,提高了燃烧反应速率。本研究使得铝基MIC的能量释放和燃烧效率得到了提高。 展开更多
关键词 亚稳态分子间复合材料 Al@AP/PVDF纳米复合材料 氧化石墨烯 能量释放 燃烧性能
下载PDF
Elaborative collection of condensed combustion products of solid propellants:Towards a real Solid Rocket Motor(SRM)operational environment 被引量:1
2
作者 Wenchao ZHANG Zhimin FAN +4 位作者 Dongliang GOU Yao SHU peijin liu Aimin PANG Wen AO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期77-88,共12页
A novel constant-pressure and constant-quenching distance Condensed Combustion Products(CCPs)collection system was developed,coupled with a timing control system,to collect the CCPs formed in the course of burning of ... A novel constant-pressure and constant-quenching distance Condensed Combustion Products(CCPs)collection system was developed,coupled with a timing control system,to collect the CCPs formed in the course of burning of aluminum-based composite propellants.The effects of adiabatic graphite plating,collection zone,quenching distance,time series of collection,and propellant burning rate on the microscopic morphology,particle size distribution and unburned aluminum content of CCPs were investigated.It was verified that the graphite plating can provide a high-fidelity high-temperature environment for propellant combustion.The combustion efficiency is improved by 2.44% compared to the bare propellant case.The time series of collection has a significant effect on the combustion efficiency of aluminum,and the combustion efficiency of aluminum in the thermal state(1.2-2.4 s)is 2.75% higher than that in the cold state(0-1.2 s).Similarly,the characteristics of the CCPs in different collection zones are different.At the quenching distance of 5 mm,the combustion efficiency of aluminum in the core zone(85.39%)is much lower than that in the outer zone(92.07%),while the particle size of the CCPs in the core zone(172μm)is larger than that in the outer zone(41μm).This indicates that the core zone is more likely to produce large-sized and incompletely burned agglomerates during the propellant combustion process.Different burning rates also lead to a significant difference in particle size distribution and combustion efficiency.High burning rates result in higher combustion efficiency.A detailed sequence of the elaborative collection process of CCPs is proposed,mainly including the setting of ignition delay time,burning rate,working pressure,plating length and time series of collection.The findings of this study are expected to provide a reliable tool for the evaluation of the combustion efficiency of solid propellants. 展开更多
关键词 Composite propellants Condensed combustion products ALUMINUM Combustion efficiency Particle size distribution
原文传递
Dynamic Reconstruction of Total-cross-tied Photovoltaic Array Based on Arrays Using an Improved Dung Beetle Algorithm
3
作者 peijin liu Tao Huang +2 位作者 Yong Chen Lei Dong Fei Yu 《Chinese Journal of Electrical Engineering》 EI 2024年第3期77-93,共17页
A dynamic reconfiguration method for photovoltaic(PV)arrays based on an improved dung beetle algorithm(IDBO)to address the issue of PV array mismatch loss caused by partial shading conditions(PSCs)is proposed.To estab... A dynamic reconfiguration method for photovoltaic(PV)arrays based on an improved dung beetle algorithm(IDBO)to address the issue of PV array mismatch loss caused by partial shading conditions(PSCs)is proposed.To establish the output power-current(P-I)segmentation function for the total-cross-tied(TCT)PV array and the constraint function for the electrical switches,the IDBO algorithm was used to optimize both the P-I segmentation function and the electrical switch constraint function.IDBO is compared with algorithm-free reconfiguration and five other heuristic algorithms using two evaluation criteria:mismatch loss and power enhancement percentage,across six shading scenarios for 6x6 PV arrays.The irradiation distribution of PV arrays reconfigured by IDBO is also presented.The results show that IDBO effectively increases the output power of PV arrays and reduces mismatch loss.The output PV curves tend to exhibit a single peak,and the reconstruction results are superior to those obtained with the other methods. 展开更多
关键词 Photovoltaic power generation local shade dynamic reconstruction power mismatch improved dung beetle algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部