A seismic reflection of Line 12-B belonging to Mianwali Re-entrant was acquired and processed for 2-D interpretation. The line orients itself NNE-SSW direction. The sections have the shot points from VP-199 to VP-1044...A seismic reflection of Line 12-B belonging to Mianwali Re-entrant was acquired and processed for 2-D interpretation. The line orients itself NNE-SSW direction. The sections have the shot points from VP-199 to VP-1044. Eleven Reflectors R1, R2, R3, Base Miocene, Pinchout P1, P2, P3, P4, P5P6 (Pinchout) are marked and a basement has been marked and interpreted. All the reflectors above the basement show a downward bending at the center. The depth of each reflector was calculated by iso velocity contour map method. The depth section obtained by this method shows stratigraphic features like Pinchouts. The reflectors are then correlated with the subsurface structures and stratigraphy of the area.展开更多
Integrating various data sets to provide one optimal subsurface image is a major goal of geophysicst. In this paper, there is a synergetic approach used to delineate the tectonic-structural framework with analyzing th...Integrating various data sets to provide one optimal subsurface image is a major goal of geophysicst. In this paper, there is a synergetic approach used to delineate the tectonic-structural framework with analyzing the hydrocarbon reservoir in the Lower Indus Platform basin of Pakistan. The reflected seismic profiles and potential field map constitute the data base of this study. Our study in the line of the previous research is resulted from important oil and gas discoveries contained in the Early Cretaceous and Upper Jurassic formations of the Lower Indus Platform basin area. The result shows trapping mechanism in the Lower Indus Platform basin involves of the fault blocks and stratigraphic traps are present in the area. The more refined images are interpreted to provide greater insight into detailed integrated geophysical study of area.展开更多
Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first tw...Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first two models are primarily constructed on pure mechanical models but are unable to reasonably explain the tension and shear phenomena inside the plateau.The latter two are rheological dynamic models based on deep geophysical observations.However,the spatial range of the lower crustal flow and its role in the plateau formation/uplift remain controversial.Five multi-terrane viscoplastic thermomechanical models were constructed to simulate the uplift and lithospheric structure change of the Tibetan Plateau during the post-collision stage(since 35 Ma)under the convergence of the Indian Plate.Results show that the plateau's formation begins with crustal thickening,blocked by strong terranes at the northern plateau,and expanded laterally to the east.The lithosphere thickens gradually and experiences delamination at its base,elevating temperature within the crust and forming partial melting layers in the central plateau.As convergence persists on the southern side,the northern plateau's lithosphere bends downward and undergoes delamination,further heating the crust and promoting the northward and eastward flow of partial melting layers,leading to secondary uplift around the plateau.展开更多
文摘A seismic reflection of Line 12-B belonging to Mianwali Re-entrant was acquired and processed for 2-D interpretation. The line orients itself NNE-SSW direction. The sections have the shot points from VP-199 to VP-1044. Eleven Reflectors R1, R2, R3, Base Miocene, Pinchout P1, P2, P3, P4, P5P6 (Pinchout) are marked and a basement has been marked and interpreted. All the reflectors above the basement show a downward bending at the center. The depth of each reflector was calculated by iso velocity contour map method. The depth section obtained by this method shows stratigraphic features like Pinchouts. The reflectors are then correlated with the subsurface structures and stratigraphy of the area.
文摘Integrating various data sets to provide one optimal subsurface image is a major goal of geophysicst. In this paper, there is a synergetic approach used to delineate the tectonic-structural framework with analyzing the hydrocarbon reservoir in the Lower Indus Platform basin of Pakistan. The reflected seismic profiles and potential field map constitute the data base of this study. Our study in the line of the previous research is resulted from important oil and gas discoveries contained in the Early Cretaceous and Upper Jurassic formations of the Lower Indus Platform basin area. The result shows trapping mechanism in the Lower Indus Platform basin involves of the fault blocks and stratigraphic traps are present in the area. The more refined images are interpreted to provide greater insight into detailed integrated geophysical study of area.
基金sponsored by the National Key R&D Program of China(No.2021YFA0715100)the Shenzhen Fundamental Research Program,China(No.JCYJ20220818102601004)+1 种基金the National Natural Science Foundation of China(No.41774145)the Pre-research Project on Civil Aerospace Technologies(No.D020101)of CNSA。
文摘Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first two models are primarily constructed on pure mechanical models but are unable to reasonably explain the tension and shear phenomena inside the plateau.The latter two are rheological dynamic models based on deep geophysical observations.However,the spatial range of the lower crustal flow and its role in the plateau formation/uplift remain controversial.Five multi-terrane viscoplastic thermomechanical models were constructed to simulate the uplift and lithospheric structure change of the Tibetan Plateau during the post-collision stage(since 35 Ma)under the convergence of the Indian Plate.Results show that the plateau's formation begins with crustal thickening,blocked by strong terranes at the northern plateau,and expanded laterally to the east.The lithosphere thickens gradually and experiences delamination at its base,elevating temperature within the crust and forming partial melting layers in the central plateau.As convergence persists on the southern side,the northern plateau's lithosphere bends downward and undergoes delamination,further heating the crust and promoting the northward and eastward flow of partial melting layers,leading to secondary uplift around the plateau.