期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Orthogonally woven 3D nanofiber scaffolds promote rapid soft tissue regeneration by enhancing bidirectional cell migration
1
作者 Jiayi Yuan Bingbing Sun +6 位作者 Weixing Ma Chao Cai Zhenzhen Huang peiyi zhou Lei Yi Lubin Liu Shixuan Chen 《Bioactive Materials》 SCIE CSCD 2024年第9期582-594,共13页
Repairing large-area soft tissue defects caused by traumas is a major surgical challenge.Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regene... Repairing large-area soft tissue defects caused by traumas is a major surgical challenge.Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regeneration.In this study,we developed an orthogonally woven three-dimensional(3D)nanofiber scaffold combining electrospinning,weaving,and modified gas-foaming technology.The developed orthogonally woven 3D nanofiber scaffold had a modular design and controlled fiber alignment.In vitro,the orthogonally woven 3D nanofiber scaffold exhibited adjustable mechanical properties,good cell compatibility,and easy drug loading.In vivo,for one thing,the implantation of an orthogonally woven 3D nanofiber scaffold in a full abdominal wall defect model demonstrated that extensive granulation tissue formation with enough mechanical strength could promote recovery of abdominal wall defects while reducing intestinal adhesion.Another result of diabetic wound repair experiments suggested that orthogonally woven 3D nanofiber scaffolds had a higher wound healing ratio,granulation tissue formation,collagen deposition,and re-epithelialization.Taken together,this novel orthogonally woven 3D nanofiber scaffold may provide a promising and effective approach for optimal soft tissue regeneration. 展开更多
关键词 Tissue regeneration ELECTROSPINNING 3D nanofiber scaffold Orthogonal weaving Cell migration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部