This article presents an 8-element dual-polarized phased-array transceiver(TRX)front-end IC for millimeter-wave(mm-Wave)5G new radio(NR).Power enhancement technologies for power amplifiers(PA)in mm-Wave 5G phased-arra...This article presents an 8-element dual-polarized phased-array transceiver(TRX)front-end IC for millimeter-wave(mm-Wave)5G new radio(NR).Power enhancement technologies for power amplifiers(PA)in mm-Wave 5G phased-array TRX are discussed.A four-stage wideband high-power class-AB PA with distributed-active-transformer(DAT)power combining and multi-stage second-harmonic traps is proposed,ensuring the mitigated amplitude-to-phase(AM-PM)distortions across wide carrier frequencies without degrading transmitting(TX)power,gain and efficiency.TX and receiving(RX)switching is achieved by a matching network co-designed on-chip T/R switch.In each TRX element,6-bit 360°phase shifting and 6-bit 31.5-dB gain tuning are respectively achieved by the digital-controlled vector-modulated phase shifter(VMPS)and differential attenuator(ATT).Fabricated in 65-nm bulk complementary metal oxide semiconductor(CMOS),the proposed TRX demonstrates the measured peak TX/RX gains of 25.5/21.3 dB,covering the 24−29.5 GHz band.The measured peak TX OP1dB and power-added efficiency(PAE)are 20.8 dBm and 21.1%,respectively.The measured minimum RX NF is 4.1 dB.The TRX achieves an output power of 11.0−12.4 dBm and error vector magnitude(EVM)of 5%with 400-MHz 5G NR FR2 OFDM 64-QAM signals across 24−29.5 GHz,covering 3GPP 5G NR FR2 operating bands of n257,n258,and n261.展开更多
Sepsis progression is significantly associated with the disruption of gut eubiosis.However,the modulatory mechanisms of gut microbiota operating during sepsis are still unclear.Herein,we investigated how gut commensal...Sepsis progression is significantly associated with the disruption of gut eubiosis.However,the modulatory mechanisms of gut microbiota operating during sepsis are still unclear.Herein,we investigated how gut commensals impact sepsis development in a pre-clinical model.Cecal ligation and puncture(CLP)surgery was used to establish polymicrobial sepsis in mice.Mice depleted of gut microbiota by an antibiotic cocktail(ABX)exhibited a significantly higher level of mortality than controls.As determined by metabolomics analysis,ABX treatment has depleted many metabolites,and subsequent supplementation with L-rhamnose(rhamnose,Rha),a bacterial carbohydrate metabolite,exerted profound immunomodulatory properties with a significant enhancement in macrophage phagocytosis,which in turn improved organ damage and mortality.Mechanistically,rhamnose binds directly to and activates the solute carrier family 12(potassium-chloride symporter),member 4(SLC12A4)in macrophages and promotes phagocytosis by activating the small G-proteins,Ras-related C3 botulinum toxin substrate1(Rac1)and cell division control protein 42 homolog(Cdc42).Interestingly,rhamnose has enhanced the phagocytosis capacity of macrophages from sepsis patients.In conclusion,by identifying SLC12A4 as the host interacting protein,we disclosed that the gut commensal metabolite rhamnose is a functional molecular that could promote the phagocytosis capacity of macrophages and protect the host against sepsis.展开更多
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi...Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.展开更多
Compton scattering with bound electrons contributes to a significant atomic effect in low-momentum transfer,yielding background structures in direct light dark matter searches as well as low-energy rare event experime...Compton scattering with bound electrons contributes to a significant atomic effect in low-momentum transfer,yielding background structures in direct light dark matter searches as well as low-energy rare event experiments.We report the measurement of Compton scattering in low-momentum transfer by implementing a 10-g germanium detector bombarded by a^(137)Cs source with a radioactivity of 8.7 mCi and a scatter photon captured by a cylindrical NaI(Tl)detector.A fully relativistic impulse approximation combined with multi-configuration Dirac–Fock wavefunctions was evaluated,and the scattering function of Geant4 software was replaced by our calculation results.Our measurements show that the Livermore model with the modified scattering function in Geant4 is in good agreement with the experimental data.It is also revealed that atomic many-body effects significantly influence Compton scattering for low-momentum transfer(sub-keV energy transfer).展开更多
Objective The aim of this study was to analyze whether Jinlong capsule could decrease adverse reactions after transcatheter arterial chemoembolization(TACE) in patients with hepatocellular carcinoma. Methods Eighty-tw...Objective The aim of this study was to analyze whether Jinlong capsule could decrease adverse reactions after transcatheter arterial chemoembolization(TACE) in patients with hepatocellular carcinoma. Methods Eighty-two patients with hepatocellular carcinoma were randomly divided into the control group and experimental group. On the first day after TACE, the experimental group started receiving four Jinlong capsules orally three times daily, whereas the control group did not receive the treatment.Results The incidences of erythropenia and thrombocytopenia in the experimental group was lower than those in the control group(P = 0.040 and 0.033, respectively). The differences in serum levels of aminotransferase, albumin, potassium, and sodium between the two groups were significant(P = 0.034, 0.034, 0.013, and 0.044, respectively). The mean durations of stomachache and abdominal distension in the experimental group was significantly shorter than those in the control group(P = 0.004 and 0.021, respectively). However, there were no significant differences in the incidences of nausea, fever, and vomiting between the two groups(P = 0.490, 0.495, and 0.585, respectively). Conclusion The reduction in the incidence rate and duration of partial adverse reactions after TACE was observed in hepatocellular carcinoma patients treated with Jinlong capsule compared to untreated patients, suggesting possible beneficial effects exerted by Jinlong capsule on the reduction of TACE-induced liver damage, thereby improving liver function and, consequently, the quality of life.展开更多
Objective:To investigate the effect of body mass index(BMI)on the operation time and postoperative hospital stay for patients who underwent retroperitoneal laparoscopic decortication for a single simple renal cyst.Met...Objective:To investigate the effect of body mass index(BMI)on the operation time and postoperative hospital stay for patients who underwent retroperitoneal laparoscopic decortication for a single simple renal cyst.Methods:A retrospective cohort study was conducted among 81 patients with single simple renal cyst who had undergone retroperitoneal laparoscopic cyst decortication from January 2017 to December 2019 in Wuxi Xishan People's Hospital.All patients were divided into three groups according to BMI:normal group(BMI<25 kg/m^(2),n=44),overweight group(BMI=25-30 kg/m^(2),n=21),and obese group(BMI>30 kg/m^(2),n=16).Multiple linear regression was conducted to investigate the correlation.Results:The three groups were comparable in terms of age,gender,maximum diameter of cyst,and cyst location.In the aspect of operation time,only the patients in obese group had longer duration when compared with those in the normal group(59.1±15.7 min vs.45.2±12.8 min,p=0.001).And the patients in the obese group had significantly longer hospital stay compared with those in the normal group(6.2±1.9 d vs.5.2±0.5 d,p=0.002)and overweight group(6.2±1.9 d vs.5.0±1.0d,p=0.001).In the analysis of multiple linear regression,it was found that operation time is significantly affected by BMI and location 2,with coefficients of 1.299 and -8.646 respectively.The influence of BMI was greater than location 2(0.335 vs.-0.289).For hospital stay,only BMI had an effect on it,with a coefficient of 0.110.Conclusion:BMI was a major factor that associated with longer operation time and hospital stay in patients with retroperitoneal laparoscopic renal cyst decortication.展开更多
Trogocytosis is a process which involves the transfer of membrane fragments and cell surface proteins between cells. Various types of T cells have been shown to be able to acquire membrane-bound proteins from antigen-...Trogocytosis is a process which involves the transfer of membrane fragments and cell surface proteins between cells. Various types of T cells have been shown to be able to acquire membrane-bound proteins from antigen-presenting cells and their functions can be modulated following trogocytosis. However, it is not known whether induced regulatory T cells (iTregs) can undergo trogocytosis, and if so, what the functional consequences of this process might entail. In this study, we show that iTregs can be generated from CD80-/-CD86-/- double knockout (DKO) mice. Using flow cytometry and confocal fluorescence microscopy, we demonstrate that iTregs generated from DKO mice are able to acquire both CD80 and CD86 from mature dendritic cells (mDCs) and that the acquisition of CD86 occurs to a higher extent than that of CD80. Furthermore, we found that after co-incubation with iTregs, dendritic cells (DCs) downregulate their surface expression of CD80 and CD86. The trogocytosis of both CD80 and CD86 occurs in a cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), CD28 and programmed death ligand-1 (PDL1)-independent manner. Importantly, we showed that iTregs that acquired CD86 from mDCs expressed higher activation markers and their ability to suppress naive CD4+ T-cell proliferation was enhanced, compared to iTregs that did not acquire CD86. These data demonstrate, for the first time, that iTregs can acquire CD80 and CD86 from mDCs, and the acquisition of CD86 may enhance their suppressive function. These findings provide novel understanding of the interaction between iTregs and DCs, suggesting that trogocytosis may play a significant role in iTreg-mediated immune suppression.展开更多
The gut microbiome is recognized as a key modulator of sepsis development.However,the contribution of the gut mycobiome to sepsis development is still not fully understood.Here,we demonstrated that the level of Candid...The gut microbiome is recognized as a key modulator of sepsis development.However,the contribution of the gut mycobiome to sepsis development is still not fully understood.Here,we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis,and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture(CLP)-challenged mice and Escherichia coli-challenged pigs.Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate(PPA)enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis.Mechanistically,PPA directly binds to sirtuin 2(SIRT2)and increases reactive oxygen species(ROS)production for eventual bacterial clearance.Importantly,PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients.Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.展开更多
Highly efficient, clean, and sustainable electrochemical energy storage technologies have been investigated extensively to counter the shortage of fossil fuels and increasingly prominent environmental problems. Superc...Highly efficient, clean, and sustainable electrochemical energy storage technologies have been investigated extensively to counter the shortage of fossil fuels and increasingly prominent environmental problems. Supercapacitors(SCs) have received wide attention as critical devices for electrochemical energy storage because of their rapid charging-discharging capability and long life cycle. Various transition metal oxides(TMOs), such as MnO_2, NiO, Co_3O_4,and CuO, have been extensively studied as electrode materials for SCs. Compared with carbon and conducting polymers,TMO materials can achieve higher specific capacitance. For further improvement of electrochemical performance, hierarchically nano structured TMO materials have become a hot research area for electrode materials in SCs. The hierarchical nanostructure can not only offer abundant accessible electroactive sites for redox reactions but also shorten the ion diffusion pathway. In this review, we provide an overall summary and evaluation of the recent progress of hierarchically nano structured TMOs for SCs, including synthesis methods, compositions, structures, and electrochemical performances. Both single-phase TMOs and the composites based on TMOs are summarized. Furthermore, we also prospect the developing foreground of this field. In this view, the important directions mainly include: the nanocomposites of TMOs materials with conductive materials; the cobalt-based materials and the nickel-based materials; the improvement of the volume energy density, the asymmetric SCs, and the flexible all-solid-state SCs.展开更多
Matrix-vector multiplication is the key operation for many computationally intensive algorithms. The emerging metal oxide resistive switching random access memory (RRAM) device and RRAM crossbar array have demonstra...Matrix-vector multiplication is the key operation for many computationally intensive algorithms. The emerging metal oxide resistive switching random access memory (RRAM) device and RRAM crossbar array have demonstrated a promising hardware realization of the analog matrix-vector multiplication with ultra-high energy efficiency. In this paper, we analyze the impact of both device level and circuit level non-ideal factors, including the nonlinear current-voltage relationship of RRAM devices, the variation of device fabrication and write operation, and the interconnect resistance as well as other crossbar array parameters. On top of that, we propose a technological exploration flow for device parameter configuration to overcome the impact of non-ideal factors and achieve a better trade-off among performance, energy, and reliability for each specific application. Our simulation results of a support vector machine (SVM) and Mixed National Institute of Standards and Technology (MNIST) pattern recognition dataset show that RRAM crossbar array based SVM is robust to input signal fluctuation but sensitive to tunneling gap deviation. A further resistance resolution test presents that a 6-bit RRAM device is able to realize a recognition accuracy around 90%, indicating the physical feasibility of RRAM crossbar array based SVM. In addition, the proposed technological exploration flow is able to achieve 10.98% improvement of recognition accuracy on the MNIST dataset and 26.4% energy savings compared with previous work. Experimental results also show that more than 84.4% power saving can be achieved at the cost of little accuracy reduction.展开更多
Van der Waals heterojunctions are fast-emerging quantum structures fabricated by the controlled stacking of two-dimensional(2D)materials.Owing to the atomically thin thickness,their carrier properties are not only det...Van der Waals heterojunctions are fast-emerging quantum structures fabricated by the controlled stacking of two-dimensional(2D)materials.Owing to the atomically thin thickness,their carrier properties are not only determined by the host material itself,but also defined by the interlayer interactions,including dielectric environment,charge trapping centers,and stacking angles.The abundant constituents without the limitation of lattice constant matching enable fascinating electrical,optical,and magnetic properties in van der Waals heterojunctions toward next-generation devices in photonics,optoelectronics,and information sciences.This review focuses on the charge and energy transfer processes and their dynamics in transition metal dichalcogenides(TMDCs),a family of quantum materials with strong excitonic effects and unique valley properties,and other related 2D materials such as graphene and hexagonalboron nitride.In the first part,we summarize the ultrafast charge transfer processes in van der Waals heterojunctions,including its experimental evidence and theoretical understanding,the interlayer excitons at the TMDC interfaces,and the hot carrier injection at the graphene/TMDCs interface.In the second part,the energy transfer,including both Förster and Dexter types,are reviewed from both experimental and theoretical perspectives.Finally,we highlight the typical charge and energy transfer applications in photodetectors and summarize the challenges and opportunities for future development in this field.展开更多
With the rapid development of science and technology,the emergence of new application scenarios,such as robots,driverless vehicles and smart city,puts forward high requirements for artificial visual systems.Optoelectr...With the rapid development of science and technology,the emergence of new application scenarios,such as robots,driverless vehicles and smart city,puts forward high requirements for artificial visual systems.Optoelectronic synaptic devices have attracted much attention due to their advantages in sensing,memory and computing integration.In this work,via band structure engineering and heterostructure designing,a heterojunction optoelectronic synaptic device based on Cu doped with n-type SrTiO_(3)(Cu:STO)film combined with p-type CuAlO_(2)(CAO)thin film was fabricated.It is found surprisingly that the optoelectronic device based on Cu:STO/CAO p-n heterojunction exhibits a rapid response of 2 ms,and that it has a wideband response from visible to near-infrared(NIR)region.Additionally,a series of important synaptic functions,including excitatory postsynaptic current(EPSC),paired-pulse facilitation(PPF),shortterm potentiation(STP)to long-term potentiation(LTP)transition,learning experience behavior and image sharpening,have been successfully simulated on the device.More importantly,the performance of the device remains still stable and reliable after several months which were stored at room temperature and atmospheric pressure.Based on these advantages,the optoelectronic synaptic devices demonstrated here provide great potential in the new generation of artificial visual systems.展开更多
基金This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB1803000in part by the Major Key Project of Peng Cheng Laboratory,Shenzhen,China,under Project PCL2021A01-2.
文摘This article presents an 8-element dual-polarized phased-array transceiver(TRX)front-end IC for millimeter-wave(mm-Wave)5G new radio(NR).Power enhancement technologies for power amplifiers(PA)in mm-Wave 5G phased-array TRX are discussed.A four-stage wideband high-power class-AB PA with distributed-active-transformer(DAT)power combining and multi-stage second-harmonic traps is proposed,ensuring the mitigated amplitude-to-phase(AM-PM)distortions across wide carrier frequencies without degrading transmitting(TX)power,gain and efficiency.TX and receiving(RX)switching is achieved by a matching network co-designed on-chip T/R switch.In each TRX element,6-bit 360°phase shifting and 6-bit 31.5-dB gain tuning are respectively achieved by the digital-controlled vector-modulated phase shifter(VMPS)and differential attenuator(ATT).Fabricated in 65-nm bulk complementary metal oxide semiconductor(CMOS),the proposed TRX demonstrates the measured peak TX/RX gains of 25.5/21.3 dB,covering the 24−29.5 GHz band.The measured peak TX OP1dB and power-added efficiency(PAE)are 20.8 dBm and 21.1%,respectively.The measured minimum RX NF is 4.1 dB.The TRX achieves an output power of 11.0−12.4 dBm and error vector magnitude(EVM)of 5%with 400-MHz 5G NR FR2 OFDM 64-QAM signals across 24−29.5 GHz,covering 3GPP 5G NR FR2 operating bands of n257,n258,and n261.
基金supported by the National Key R&D Program of China(2022YFA0806400)the National Natural Science Foundation of China(32071124,32271230)to Peng Chen+1 种基金National Natural Science Foundation of China(82130063)Special Support Plan for Outstanding Talents of Guangdong Province(2019JC05Y340,China)to Yong Jiang.
文摘Sepsis progression is significantly associated with the disruption of gut eubiosis.However,the modulatory mechanisms of gut microbiota operating during sepsis are still unclear.Herein,we investigated how gut commensals impact sepsis development in a pre-clinical model.Cecal ligation and puncture(CLP)surgery was used to establish polymicrobial sepsis in mice.Mice depleted of gut microbiota by an antibiotic cocktail(ABX)exhibited a significantly higher level of mortality than controls.As determined by metabolomics analysis,ABX treatment has depleted many metabolites,and subsequent supplementation with L-rhamnose(rhamnose,Rha),a bacterial carbohydrate metabolite,exerted profound immunomodulatory properties with a significant enhancement in macrophage phagocytosis,which in turn improved organ damage and mortality.Mechanistically,rhamnose binds directly to and activates the solute carrier family 12(potassium-chloride symporter),member 4(SLC12A4)in macrophages and promotes phagocytosis by activating the small G-proteins,Ras-related C3 botulinum toxin substrate1(Rac1)and cell division control protein 42 homolog(Cdc42).Interestingly,rhamnose has enhanced the phagocytosis capacity of macrophages from sepsis patients.In conclusion,by identifying SLC12A4 as the host interacting protein,we disclosed that the gut commensal metabolite rhamnose is a functional molecular that could promote the phagocytosis capacity of macrophages and protect the host against sepsis.
基金supported by the ‘‘Detection of very low-flux background neutrons in China Jinping Underground Laboratory’’ project of the National Natural Science Foundation of China(No.11275134)
文摘Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.
基金supported by the National Key Research and Development Program of China(No.2017YFA0402203),the National Natural Science Foundation of China(Nos.11975159 and 11975162).
文摘Compton scattering with bound electrons contributes to a significant atomic effect in low-momentum transfer,yielding background structures in direct light dark matter searches as well as low-energy rare event experiments.We report the measurement of Compton scattering in low-momentum transfer by implementing a 10-g germanium detector bombarded by a^(137)Cs source with a radioactivity of 8.7 mCi and a scatter photon captured by a cylindrical NaI(Tl)detector.A fully relativistic impulse approximation combined with multi-configuration Dirac–Fock wavefunctions was evaluated,and the scattering function of Geant4 software was replaced by our calculation results.Our measurements show that the Livermore model with the modified scattering function in Geant4 is in good agreement with the experimental data.It is also revealed that atomic many-body effects significantly influence Compton scattering for low-momentum transfer(sub-keV energy transfer).
基金Supported by a grant from the Scientific Innovation Foundation of Xinjiang Medical University(No.XJC2013118)
文摘Objective The aim of this study was to analyze whether Jinlong capsule could decrease adverse reactions after transcatheter arterial chemoembolization(TACE) in patients with hepatocellular carcinoma. Methods Eighty-two patients with hepatocellular carcinoma were randomly divided into the control group and experimental group. On the first day after TACE, the experimental group started receiving four Jinlong capsules orally three times daily, whereas the control group did not receive the treatment.Results The incidences of erythropenia and thrombocytopenia in the experimental group was lower than those in the control group(P = 0.040 and 0.033, respectively). The differences in serum levels of aminotransferase, albumin, potassium, and sodium between the two groups were significant(P = 0.034, 0.034, 0.013, and 0.044, respectively). The mean durations of stomachache and abdominal distension in the experimental group was significantly shorter than those in the control group(P = 0.004 and 0.021, respectively). However, there were no significant differences in the incidences of nausea, fever, and vomiting between the two groups(P = 0.490, 0.495, and 0.585, respectively). Conclusion The reduction in the incidence rate and duration of partial adverse reactions after TACE was observed in hepatocellular carcinoma patients treated with Jinlong capsule compared to untreated patients, suggesting possible beneficial effects exerted by Jinlong capsule on the reduction of TACE-induced liver damage, thereby improving liver function and, consequently, the quality of life.
文摘Objective:To investigate the effect of body mass index(BMI)on the operation time and postoperative hospital stay for patients who underwent retroperitoneal laparoscopic decortication for a single simple renal cyst.Methods:A retrospective cohort study was conducted among 81 patients with single simple renal cyst who had undergone retroperitoneal laparoscopic cyst decortication from January 2017 to December 2019 in Wuxi Xishan People's Hospital.All patients were divided into three groups according to BMI:normal group(BMI<25 kg/m^(2),n=44),overweight group(BMI=25-30 kg/m^(2),n=21),and obese group(BMI>30 kg/m^(2),n=16).Multiple linear regression was conducted to investigate the correlation.Results:The three groups were comparable in terms of age,gender,maximum diameter of cyst,and cyst location.In the aspect of operation time,only the patients in obese group had longer duration when compared with those in the normal group(59.1±15.7 min vs.45.2±12.8 min,p=0.001).And the patients in the obese group had significantly longer hospital stay compared with those in the normal group(6.2±1.9 d vs.5.2±0.5 d,p=0.002)and overweight group(6.2±1.9 d vs.5.0±1.0d,p=0.001).In the analysis of multiple linear regression,it was found that operation time is significantly affected by BMI and location 2,with coefficients of 1.299 and -8.646 respectively.The influence of BMI was greater than location 2(0.335 vs.-0.289).For hospital stay,only BMI had an effect on it,with a coefficient of 0.110.Conclusion:BMI was a major factor that associated with longer operation time and hospital stay in patients with retroperitoneal laparoscopic renal cyst decortication.
文摘Trogocytosis is a process which involves the transfer of membrane fragments and cell surface proteins between cells. Various types of T cells have been shown to be able to acquire membrane-bound proteins from antigen-presenting cells and their functions can be modulated following trogocytosis. However, it is not known whether induced regulatory T cells (iTregs) can undergo trogocytosis, and if so, what the functional consequences of this process might entail. In this study, we show that iTregs can be generated from CD80-/-CD86-/- double knockout (DKO) mice. Using flow cytometry and confocal fluorescence microscopy, we demonstrate that iTregs generated from DKO mice are able to acquire both CD80 and CD86 from mature dendritic cells (mDCs) and that the acquisition of CD86 occurs to a higher extent than that of CD80. Furthermore, we found that after co-incubation with iTregs, dendritic cells (DCs) downregulate their surface expression of CD80 and CD86. The trogocytosis of both CD80 and CD86 occurs in a cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), CD28 and programmed death ligand-1 (PDL1)-independent manner. Importantly, we showed that iTregs that acquired CD86 from mDCs expressed higher activation markers and their ability to suppress naive CD4+ T-cell proliferation was enhanced, compared to iTregs that did not acquire CD86. These data demonstrate, for the first time, that iTregs can acquire CD80 and CD86 from mDCs, and the acquisition of CD86 may enhance their suppressive function. These findings provide novel understanding of the interaction between iTregs and DCs, suggesting that trogocytosis may play a significant role in iTreg-mediated immune suppression.
基金supported by the National Natural Science Foundation of China(32271230 and 32071124)to PCthe NIH Grant(P30DK120515)to BS+4 种基金the National Natural Science Foundation of China(82270581)to YCthe National Key R&D Project of China(2018YFC0115301)the National Natural Science Foundation of China(81974070)the Shenzhen Science and Technology Program(JCYJ20210324131010027)the Research Foundation of Shenzhen Hospital of Southern Medical University(PT2018GZR10)to WG.
文摘The gut microbiome is recognized as a key modulator of sepsis development.However,the contribution of the gut mycobiome to sepsis development is still not fully understood.Here,we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis,and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture(CLP)-challenged mice and Escherichia coli-challenged pigs.Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate(PPA)enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis.Mechanistically,PPA directly binds to sirtuin 2(SIRT2)and increases reactive oxygen species(ROS)production for eventual bacterial clearance.Importantly,PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients.Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.
基金supported by the National Natural Science Foundation of China (51202106,21671170 and 21673203)New Century Excellent Talents of the University in China (NCET-130645)+6 种基金the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(164200510018)the Plan for Scientific Innovation Talent of Henan Provincethe Program for Innovative Research Team (in Science and Technology) in the University of Henan Province(14IRTSTHN004 and 16IRTSTHN003)the Science & Technology Foundation of Henan Province (122102210253 and 13A150019)the Science & Technology Foundation of Jiangsu Province (BK20150438)the Six Talent Plan (2015-XCL-030)China Postdoctoral Science Foundation (2012M521115)
文摘Highly efficient, clean, and sustainable electrochemical energy storage technologies have been investigated extensively to counter the shortage of fossil fuels and increasingly prominent environmental problems. Supercapacitors(SCs) have received wide attention as critical devices for electrochemical energy storage because of their rapid charging-discharging capability and long life cycle. Various transition metal oxides(TMOs), such as MnO_2, NiO, Co_3O_4,and CuO, have been extensively studied as electrode materials for SCs. Compared with carbon and conducting polymers,TMO materials can achieve higher specific capacitance. For further improvement of electrochemical performance, hierarchically nano structured TMO materials have become a hot research area for electrode materials in SCs. The hierarchical nanostructure can not only offer abundant accessible electroactive sites for redox reactions but also shorten the ion diffusion pathway. In this review, we provide an overall summary and evaluation of the recent progress of hierarchically nano structured TMOs for SCs, including synthesis methods, compositions, structures, and electrochemical performances. Both single-phase TMOs and the composites based on TMOs are summarized. Furthermore, we also prospect the developing foreground of this field. In this view, the important directions mainly include: the nanocomposites of TMOs materials with conductive materials; the cobalt-based materials and the nickel-based materials; the improvement of the volume energy density, the asymmetric SCs, and the flexible all-solid-state SCs.
基金This work was supported by the National Basic Research 973 Program of China under Grant No. 2013CB329000, the National Natural Science Foundation of China under Grant Nos. 61373026, 61261160501, the Brain Inspired Computing Research of Tsinghua University under Grant No. 20141080934, Tsinghua University Initiative Scientific Research Program, and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions.
文摘Matrix-vector multiplication is the key operation for many computationally intensive algorithms. The emerging metal oxide resistive switching random access memory (RRAM) device and RRAM crossbar array have demonstrated a promising hardware realization of the analog matrix-vector multiplication with ultra-high energy efficiency. In this paper, we analyze the impact of both device level and circuit level non-ideal factors, including the nonlinear current-voltage relationship of RRAM devices, the variation of device fabrication and write operation, and the interconnect resistance as well as other crossbar array parameters. On top of that, we propose a technological exploration flow for device parameter configuration to overcome the impact of non-ideal factors and achieve a better trade-off among performance, energy, and reliability for each specific application. Our simulation results of a support vector machine (SVM) and Mixed National Institute of Standards and Technology (MNIST) pattern recognition dataset show that RRAM crossbar array based SVM is robust to input signal fluctuation but sensitive to tunneling gap deviation. A further resistance resolution test presents that a 6-bit RRAM device is able to realize a recognition accuracy around 90%, indicating the physical feasibility of RRAM crossbar array based SVM. In addition, the proposed technological exploration flow is able to achieve 10.98% improvement of recognition accuracy on the MNIST dataset and 26.4% energy savings compared with previous work. Experimental results also show that more than 84.4% power saving can be achieved at the cost of little accuracy reduction.
基金Agency for Science,Technology and Research,Grant/Award Number:1527300025Central University Basic Research Fund of China,Grant/Award Numbers:020514380231,021014380177+5 种基金National Natural Science Foundation of China,Grant/Award Numbers:12104006,21873048,92056204National Research Foundation,Grant/Award Number:NRFNRFI2016-08Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20180319Start up fundations from Anhui UniversityTsinghua UniversityState Key Laboratory of Low-Dimensional Quantum Physics。
文摘Van der Waals heterojunctions are fast-emerging quantum structures fabricated by the controlled stacking of two-dimensional(2D)materials.Owing to the atomically thin thickness,their carrier properties are not only determined by the host material itself,but also defined by the interlayer interactions,including dielectric environment,charge trapping centers,and stacking angles.The abundant constituents without the limitation of lattice constant matching enable fascinating electrical,optical,and magnetic properties in van der Waals heterojunctions toward next-generation devices in photonics,optoelectronics,and information sciences.This review focuses on the charge and energy transfer processes and their dynamics in transition metal dichalcogenides(TMDCs),a family of quantum materials with strong excitonic effects and unique valley properties,and other related 2D materials such as graphene and hexagonalboron nitride.In the first part,we summarize the ultrafast charge transfer processes in van der Waals heterojunctions,including its experimental evidence and theoretical understanding,the interlayer excitons at the TMDC interfaces,and the hot carrier injection at the graphene/TMDCs interface.In the second part,the energy transfer,including both Förster and Dexter types,are reviewed from both experimental and theoretical perspectives.Finally,we highlight the typical charge and energy transfer applications in photodetectors and summarize the challenges and opportunities for future development in this field.
基金financially supported by the National Science Funds for Excellent Young Scholars of China(No.61822106)the Natural Science Foundation of China(Nos.U19A2070,62074025)the National Key Research&Development Program(No.2020YFA0309200)。
文摘With the rapid development of science and technology,the emergence of new application scenarios,such as robots,driverless vehicles and smart city,puts forward high requirements for artificial visual systems.Optoelectronic synaptic devices have attracted much attention due to their advantages in sensing,memory and computing integration.In this work,via band structure engineering and heterostructure designing,a heterojunction optoelectronic synaptic device based on Cu doped with n-type SrTiO_(3)(Cu:STO)film combined with p-type CuAlO_(2)(CAO)thin film was fabricated.It is found surprisingly that the optoelectronic device based on Cu:STO/CAO p-n heterojunction exhibits a rapid response of 2 ms,and that it has a wideband response from visible to near-infrared(NIR)region.Additionally,a series of important synaptic functions,including excitatory postsynaptic current(EPSC),paired-pulse facilitation(PPF),shortterm potentiation(STP)to long-term potentiation(LTP)transition,learning experience behavior and image sharpening,have been successfully simulated on the device.More importantly,the performance of the device remains still stable and reliable after several months which were stored at room temperature and atmospheric pressure.Based on these advantages,the optoelectronic synaptic devices demonstrated here provide great potential in the new generation of artificial visual systems.