High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of...The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.展开更多
Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-...Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-curved shield tunnelling in soft ground were investigated using numerical simulation and field monitoring.Different curvature radii of twin curved tunnels and subsequent effects of tunnel construction were considered to reveal the tunnelling effect on ground surface settlement and tunnel deformation.The results show that the settlement trough yields one offset towards inside of curved shield tunnelling.The location of settlement trough and maximum settlement were affected by curvature radius but except for the shape and width of settlement trough.Adjacent parallel twin-curved shield tunnelling could increase the offset of existing settlement trough and maximum settlement.Then,an empirical prediction of surface settlement trough due to twin-curved shield tunnelling with same tunnel diameters in soft clay was proposed,which was applicable to curvature radius less than 800 m.Finally,a minimum radius of 600 m of curvature tunnel was proposed in terms of allowable convergence deformation of tunnel.The result could provide guidance on safety evaluation for twin curved shield tunnelling construction.展开更多
In the version of this Article originally published online,there was an error in the schematics of Figures 2b and 2c.These errors have now been corrected in the original article.
The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinka...The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinkage,and hydration heat were used as sensitive parameters to assess the response of the considered specimens.As shown by the results,in general,with an increase in the phosphorus slag content,the hydration heat of concrete decreases for all ages,but the early strength displays a downward trend and the dry shrinkage rate increases.The 90-d strength and dry shrinkage of concrete could be improved with a phosphorus residue content between 0%-20%,with the best performances in terms of mechanical properties and shrinkage characteristics being achieved for a content of 20 kg/m^(3).On the basis of these results,it can be concluded that appropriate amounts of phosphorus slag and MgO expansive agent can be used to improve the compressive strength of concrete in the later stage by reducing the hydration heat and dry shrinkage rate,respectively.展开更多
Design and modification of interfaces have been the main strategies in developing perovskite solar cells(PSCs). Among the interfacial treatments, dipole molecules have emerged as a practical approach to improve the ef...Design and modification of interfaces have been the main strategies in developing perovskite solar cells(PSCs). Among the interfacial treatments, dipole molecules have emerged as a practical approach to improve the efficiency and stability of PSCs due to their unique and versatile abilities to control the interfacial properties. Despite extensive applications in conventional semiconductors, working principles and design of interfacial dipoles in the performance/stability enhancement of PSCs are lacking an insightful elucidation. In this review, we first discuss the fundamental properties of electric dipoles and the specific roles of interfacial dipoles in PSCs. Then we systematically summarize the recent progress of dipole materials in several key interfaces to achieve efficient and stable PSCs. In addition to such discussions, we also dive into reliable analytical techniques to support the characterization of interfacial dipoles in PSCs. Finally, we highlight future directions and potential avenues for research in the development of dipolar materials through tailored molecular designs. Our review sheds light on the importance of continued efforts in this exciting emerging field, which holds great potential for the development of high-performance and stable PSCs as commercially demanded.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
AIM:To explore the relationship between ocular and systemic conditions and the impact of ocular complications on the quality of life(QOL)in patients after allogeneic hematopoietic stem cell transplantation(ALLO-HSCT)....AIM:To explore the relationship between ocular and systemic conditions and the impact of ocular complications on the quality of life(QOL)in patients after allogeneic hematopoietic stem cell transplantation(ALLO-HSCT).METHODS:Forty-four patients with severe hematopoietic disease were enrolled after ALLO-HSCT at our center from July 2018 to October 2020.They completed two questionnaires:the Ocular Surface Disease Index(OSDI)and the quality-of-life scale for Chinese patients with visual impairment(SQOL-DV1).Ocular conditions and systemic conditions were also assessed.RESULTS:Eye damage was correlated with total bilirubin(P=0.005),and gamma-glutamyl transferase(GGT)(P=0.021).There was no significant correlation between the overall QOL score and OSDI(P=0.8226)or SQOLDV1(P=0.9526)scores.The OSDI and the overall QOL score were not correlated with ocular conditions,including best-corrected visual acuity(BCVA),intraocular pressure,Schirmer tear test II,sodium fluorescein staining,tear film breakup time,and tear meniscus height.SQOLDV1 was correlated with BCVA(P=0.0007),sodium fluorescein staining(P=0.007),and tear film breakup time(P=0.0146).CONCLUSION:In some patients,early ocular symptoms are not evident after ALLO-HSCT,while ocular surface complications can be observed after a comprehensive ophthalmological examination.Especially for those with elevated total bilirubin or GGT,regular ophthalmic follow-up visits are essential to diagnose and treat ocular graft versus host disease(o GVHD),especially for patients with elevated total bilirubin or GGT.展开更多
The increasing radio frequency interference(RFI)is a well-recognized problem in radio astronomy research.Pulsars and Fast Radio Bursts(FRBs)are high-priority science targets of the ongoing Commercial Radio Astronomy F...The increasing radio frequency interference(RFI)is a well-recognized problem in radio astronomy research.Pulsars and Fast Radio Bursts(FRBs)are high-priority science targets of the ongoing Commercial Radio Astronomy FAST Survey(CRAFTS).To improve the quality of RFI removal in searches of pulsars and FRBs based on CRAFTS multi-beam data,we here propose an intuitive but powerful RFI mitigation pipeline(CCF-ST).The“CCF-ST”is a spatial filter constructed by signal cross-correlation function(CCF)and Sum-Threshold(ST)algorithm.The RFI marking result is saved in a“mask”file,a binary format for RFI masks in PRESTO.Three known pulsars,PSR B0525-21,PSR B0621-04,and PSR J0943+2252 from CRAFTS L-band 19 beams data are used for evaluation of the performance of CCF-ST in comparison with other methods,such as PRESTO’s“rfifind”,ArPLS-ST and ArPLS-SF.The result shows that CCF-ST can reduce effective data loss rate and improves the detected signal-to-noise ratio of the pulsations by~26%and~18%respectively compared with PRESTO’s“rfifind”and ArPLS-ST.The CCF-ST also has the advantage of low computational cost,e.g.,reducing the time consumption by~40%and memory consumption by~90%compared with ArPLS-SF.We expect that the new RFI mitigation and analysis toolkit(CCF-ST)demonstrated in this paper can be applied to CRAFTS and other multi-beam telescope observations to improve the data quality and efficiency of pulsar and FRB searches.展开更多
Huge quantities of zinc leaching residues(ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heav...Huge quantities of zinc leaching residues(ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals(mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L^(-1), a liquid/solid ratio of 4:1(m L/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L^(-1), a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.展开更多
A novel industrial process was designed for the highly selective production of ethylbenzene. It comprised of a reactor vessel, vapor phase ethylene feed stream, benzene and transalkylation feed stream. Especially the ...A novel industrial process was designed for the highly selective production of ethylbenzene. It comprised of a reactor vessel, vapor phase ethylene feed stream, benzene and transalkylation feed stream. Especially the product stream containing ethylbenzene was used to heat the reactor vessel, which consisted of an alkylation section, an upper heat exchange section, and a bottom heat exchange section. In such a novel reactor, vapor phase benzene and liquid phase benzene were coexisted due to the heat produced by isothermal reaction between the upper heat exchange section and the bottom heat exchange section. The process was demonstrated by the thermodynamic analysis and experimental results. In fact, during the 1010 hour-life-test of gas phase ethene with gas phase-liquid phase benzene alkylation reaction, the ethene conversion was above 95%, and the ethylbenzene selectivity was above 83% (only benzene feed) and even higher than 99% (benzene plus transalkylation feed). At the same time, the xylene content in the ethylbenzene was less than 100 ppm when the reaction was carried out under the reaction conditions of 140-185℃ of temperature, 1.6-2.1 MPa of pressure, 3.0-5.5 of benzene/ethylene mole ratio, 4-6 v% of transalkylation feed/(benzene+transalkylation feed), 0.19-0.27 h^-1 of ethene space velocity, and 1000 g of 3998 catalyst loaded. Thus, compared with the conventional ethylbenzene synthesis route, the transalkylation reactor could be omitted in this novel industrial process.展开更多
YAP(yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone h...YAP(yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone homeostasis remains controversial. Here we provide evidence for YAP's function in promoting osteogenesis, suppressing adipogenesis, and thus maintaining bone homeostasis.YAP is selectively expressed in osteoblast(OB)-lineage cells. Conditionally knocking out Yap in the OB lineage in mice reduces cell proliferation and OB differentiation and increases adipocyte formation, resulting in a trabecular bone loss. Mechanistically, YAP interacts with β-catenin and is necessary for maintenance of nuclear β-catenin level and Wnt/β-catenin signaling. Expression of β-catenin in YAP-deficient BMSCs(bone marrow stromal cells) diminishes the osteogenesis deficit. These results thus identify YAP-β-catenin as an important pathway for osteogenesis during adult bone remodeling and uncover a mechanism underlying YAP regulation of bone homeostasis.展开更多
The pyrolysis of phytoremediated giant reed(Arundo donax)biomass could cause secondary pollution of heavy metals.The stabilization of heavy metals in the pyrolysis process with external materials such as Al2O3,CaCO3,F...The pyrolysis of phytoremediated giant reed(Arundo donax)biomass could cause secondary pollution of heavy metals.The stabilization of heavy metals in the pyrolysis process with external materials such as Al2O3,CaCO3,FeCl3and NaOH,wasstudied.The results showed that37%As and97%Cd in biochar were stabilized when giant reed powder was pyrolyzed at250°Cwith5%Al2O3for2h.Furthermore,59%Pb in biochar was stabilized at400°C with5%CaCO3for1h.Under biochar produced inoptimized pyrolysis conditions,Cd mainly existed in a residual fraction,while Pb and As mainly existed in oxidizable fraction inBCR analysis.In XRD analysis,As was only found in Ca2As2O7;Cd in biochar mainly existed in Cd(AlCl4)2,CdPbO3or CdSO3;and Pb mainly existed as Pb3O2SO4.展开更多
Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked con...Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.展开更多
AIM:To quantitatively evaluate the effect of the combined use of 577-nm subthreshold micropulse macular laser(SML)and multi-point mode pan retinal laser photocoagulation(PRP)on severe non-proliferative diabetic retino...AIM:To quantitatively evaluate the effect of the combined use of 577-nm subthreshold micropulse macular laser(SML)and multi-point mode pan retinal laser photocoagulation(PRP)on severe non-proliferative diabetic retinopathy(NPDR)with central-involved diabetic macular edema(CIDME)using optical coherence tomography angiography(OCTA).METHODS:In this observational clinical study,86 eyes of 86 NPDR patients with CIDME who underwent SML and PRP treatment were included.Images were obtained 1 d before laser and post-laser(1 d,1 wk,1,3,and 6 mo)using AngioV ue software 2.0.Best corrected visual acuity(BCVA,LogM AR),foveal avascular zone area(FAZ),choriocapillary flow area(Ch F),parafoveal vessel density(PVD),capillary density inside disc(CDD),peripapillary capillary density(PCD),macular ganglion cell complex thickness(m GCCT),central macular thickness(CMT),and subfoveal choroidal thickness(ChT)were compared between pre-and post-laser treatment.RESULTS:BCVA remained stable during 6 mo postlaser therapy(pre-laser vs 6 mo post-laser:0.53±0.21 vs 0.5±0.15,P>0.05).PVD,ChF,ChT,CMT,and mGCCT significantly increased 1 d post-laser therapy[pre-laser vs 1 d post-laser:superficial PVD(%),40.51±3.42 vs 42.43±4.68;deep PVD(%),42.66±3.67 vs 44.78±4.52;ChF,1.72±0.21 vs 1.9±0.12 mm^2;ChT,302.45±69.74 vs 319.38±70.93μm;CMT,301.65±110.78 vs 320.86±105.62μm;m GCCT,105.71±10.72 vs 115.46±9.64μm;P<0.05].However,PVD,ChF and ChT decreased to less than baseline level at 6 mo postlaser therapy(pre-laser vs 6 mo post-laser:superficial PVD(%),40.51±3.42 vs 36.32±4.19;deep PVD(%),42.66±3.67 vs 38.76±3.74;Ch F,1.72±0.21 vs 1.62±0.09 mm^2;Ch T,302.45±69.74 vs 289.61±67.55μm;P<0.05),whereas CMT and mG CCT decreased to baseline level at 6 mo postlaser therapy(CMT,301.65±110.78 vs 297.77±90.23μm;m GCCT,105.71±10.72 vs 107.05±11.81μm;P>0.05).Moreover,FAZ continuously increased while CDD and PCD continuously decreased in 6 mo after laser therapy.CMT and ChT had a significant positive correlation with ChF and PVD in most post-laser stages.CONCLUSION:During a 6-month follow-up period after combined use of SML and PRP therapy,BCVA remained stable and there was a decreased trend in macular edema.Blood flow increased at 1 d post-laser therapy and reduced at 6 mo post-laser therapy.展开更多
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported by the National Key Research and Development Program of China(2022YFB4200301)the National Natural Science Foundation of China(52202216)the Natural Science Foundation of Sichuan Province(24NSFSC1601).
文摘The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.
基金financially supported by the National Natural Science Foundation of China(Grant No.42307260)the Sichuan Natural Science Foundation(Grant No.2023NSFSC0882)the Open Project of the Research Center of Tunnelling and Underground Engineering of Ministry of Education(Grant No.TUC2022-03).
文摘Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-curved shield tunnelling in soft ground were investigated using numerical simulation and field monitoring.Different curvature radii of twin curved tunnels and subsequent effects of tunnel construction were considered to reveal the tunnelling effect on ground surface settlement and tunnel deformation.The results show that the settlement trough yields one offset towards inside of curved shield tunnelling.The location of settlement trough and maximum settlement were affected by curvature radius but except for the shape and width of settlement trough.Adjacent parallel twin-curved shield tunnelling could increase the offset of existing settlement trough and maximum settlement.Then,an empirical prediction of surface settlement trough due to twin-curved shield tunnelling with same tunnel diameters in soft clay was proposed,which was applicable to curvature radius less than 800 m.Finally,a minimum radius of 600 m of curvature tunnel was proposed in terms of allowable convergence deformation of tunnel.The result could provide guidance on safety evaluation for twin curved shield tunnelling construction.
文摘In the version of this Article originally published online,there was an error in the schematics of Figures 2b and 2c.These errors have now been corrected in the original article.
基金supported by CSCEC Technology Research and Development Plan(CSCEC-2020-Z-39).
文摘The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinkage,and hydration heat were used as sensitive parameters to assess the response of the considered specimens.As shown by the results,in general,with an increase in the phosphorus slag content,the hydration heat of concrete decreases for all ages,but the early strength displays a downward trend and the dry shrinkage rate increases.The 90-d strength and dry shrinkage of concrete could be improved with a phosphorus residue content between 0%-20%,with the best performances in terms of mechanical properties and shrinkage characteristics being achieved for a content of 20 kg/m^(3).On the basis of these results,it can be concluded that appropriate amounts of phosphorus slag and MgO expansive agent can be used to improve the compressive strength of concrete in the later stage by reducing the hydration heat and dry shrinkage rate,respectively.
基金supported by National Key Research and Development Program of China (2022YFB4200301)the Fundamental Research Funds for the Central Universities (ZYGX2022YGRH010)+1 种基金the National Natural Science Foundation of China (62274026, 52202216)Natural Science Foundation of Sichuan Province (2023NSFSC0962, 2022NSFSC1797)。
文摘Design and modification of interfaces have been the main strategies in developing perovskite solar cells(PSCs). Among the interfacial treatments, dipole molecules have emerged as a practical approach to improve the efficiency and stability of PSCs due to their unique and versatile abilities to control the interfacial properties. Despite extensive applications in conventional semiconductors, working principles and design of interfacial dipoles in the performance/stability enhancement of PSCs are lacking an insightful elucidation. In this review, we first discuss the fundamental properties of electric dipoles and the specific roles of interfacial dipoles in PSCs. Then we systematically summarize the recent progress of dipole materials in several key interfaces to achieve efficient and stable PSCs. In addition to such discussions, we also dive into reliable analytical techniques to support the characterization of interfacial dipoles in PSCs. Finally, we highlight future directions and potential avenues for research in the development of dipolar materials through tailored molecular designs. Our review sheds light on the importance of continued efforts in this exciting emerging field, which holds great potential for the development of high-performance and stable PSCs as commercially demanded.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金Supported by Natural Science Foundation of Guangdong Province,China(No.2019A1515011212)Beijing Bethune Charitable Foundation(No.BJ-GY2021014J)。
文摘AIM:To explore the relationship between ocular and systemic conditions and the impact of ocular complications on the quality of life(QOL)in patients after allogeneic hematopoietic stem cell transplantation(ALLO-HSCT).METHODS:Forty-four patients with severe hematopoietic disease were enrolled after ALLO-HSCT at our center from July 2018 to October 2020.They completed two questionnaires:the Ocular Surface Disease Index(OSDI)and the quality-of-life scale for Chinese patients with visual impairment(SQOL-DV1).Ocular conditions and systemic conditions were also assessed.RESULTS:Eye damage was correlated with total bilirubin(P=0.005),and gamma-glutamyl transferase(GGT)(P=0.021).There was no significant correlation between the overall QOL score and OSDI(P=0.8226)or SQOLDV1(P=0.9526)scores.The OSDI and the overall QOL score were not correlated with ocular conditions,including best-corrected visual acuity(BCVA),intraocular pressure,Schirmer tear test II,sodium fluorescein staining,tear film breakup time,and tear meniscus height.SQOLDV1 was correlated with BCVA(P=0.0007),sodium fluorescein staining(P=0.007),and tear film breakup time(P=0.0146).CONCLUSION:In some patients,early ocular symptoms are not evident after ALLO-HSCT,while ocular surface complications can be observed after a comprehensive ophthalmological examination.Especially for those with elevated total bilirubin or GGT,regular ophthalmic follow-up visits are essential to diagnose and treat ocular graft versus host disease(o GVHD),especially for patients with elevated total bilirubin or GGT.
基金supported by National Natural Science Foundation of China(NSFC)under Nos.11988101,U183110134,11703047,11773041,and U1831131support by the Youth Innovation Promotion Association CAS(id.2021055)cultivation project for FAST scientific payoff and research achievement of CAMS-CAS。
文摘The increasing radio frequency interference(RFI)is a well-recognized problem in radio astronomy research.Pulsars and Fast Radio Bursts(FRBs)are high-priority science targets of the ongoing Commercial Radio Astronomy FAST Survey(CRAFTS).To improve the quality of RFI removal in searches of pulsars and FRBs based on CRAFTS multi-beam data,we here propose an intuitive but powerful RFI mitigation pipeline(CCF-ST).The“CCF-ST”is a spatial filter constructed by signal cross-correlation function(CCF)and Sum-Threshold(ST)algorithm.The RFI marking result is saved in a“mask”file,a binary format for RFI masks in PRESTO.Three known pulsars,PSR B0525-21,PSR B0621-04,and PSR J0943+2252 from CRAFTS L-band 19 beams data are used for evaluation of the performance of CCF-ST in comparison with other methods,such as PRESTO’s“rfifind”,ArPLS-ST and ArPLS-SF.The result shows that CCF-ST can reduce effective data loss rate and improves the detected signal-to-noise ratio of the pulsations by~26%and~18%respectively compared with PRESTO’s“rfifind”and ArPLS-ST.The CCF-ST also has the advantage of low computational cost,e.g.,reducing the time consumption by~40%and memory consumption by~90%compared with ArPLS-SF.We expect that the new RFI mitigation and analysis toolkit(CCF-ST)demonstrated in this paper can be applied to CRAFTS and other multi-beam telescope observations to improve the data quality and efficiency of pulsar and FRB searches.
基金financially supported by the National Natural Science Foundation of China (Nos. U1302274 and 51674026)the Fundamental Research Funds for the Central Universities (No. 230201606500078)the Yunnan Technical Innovation and Personnel Training Program
文摘Huge quantities of zinc leaching residues(ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals(mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L^(-1), a liquid/solid ratio of 4:1(m L/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L^(-1), a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.
基金This work is supported by the National 973 Project of China (2009CB623501)
文摘A novel industrial process was designed for the highly selective production of ethylbenzene. It comprised of a reactor vessel, vapor phase ethylene feed stream, benzene and transalkylation feed stream. Especially the product stream containing ethylbenzene was used to heat the reactor vessel, which consisted of an alkylation section, an upper heat exchange section, and a bottom heat exchange section. In such a novel reactor, vapor phase benzene and liquid phase benzene were coexisted due to the heat produced by isothermal reaction between the upper heat exchange section and the bottom heat exchange section. The process was demonstrated by the thermodynamic analysis and experimental results. In fact, during the 1010 hour-life-test of gas phase ethene with gas phase-liquid phase benzene alkylation reaction, the ethene conversion was above 95%, and the ethylbenzene selectivity was above 83% (only benzene feed) and even higher than 99% (benzene plus transalkylation feed). At the same time, the xylene content in the ethylbenzene was less than 100 ppm when the reaction was carried out under the reaction conditions of 140-185℃ of temperature, 1.6-2.1 MPa of pressure, 3.0-5.5 of benzene/ethylene mole ratio, 4-6 v% of transalkylation feed/(benzene+transalkylation feed), 0.19-0.27 h^-1 of ethene space velocity, and 1000 g of 3998 catalyst loaded. Thus, compared with the conventional ethylbenzene synthesis route, the transalkylation reactor could be omitted in this novel industrial process.
基金supported in part by grants from the National Institutes of Health(AG051773)and VA(BX000838)
文摘YAP(yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone homeostasis remains controversial. Here we provide evidence for YAP's function in promoting osteogenesis, suppressing adipogenesis, and thus maintaining bone homeostasis.YAP is selectively expressed in osteoblast(OB)-lineage cells. Conditionally knocking out Yap in the OB lineage in mice reduces cell proliferation and OB differentiation and increases adipocyte formation, resulting in a trabecular bone loss. Mechanistically, YAP interacts with β-catenin and is necessary for maintenance of nuclear β-catenin level and Wnt/β-catenin signaling. Expression of β-catenin in YAP-deficient BMSCs(bone marrow stromal cells) diminishes the osteogenesis deficit. These results thus identify YAP-β-catenin as an important pathway for osteogenesis during adult bone remodeling and uncover a mechanism underlying YAP regulation of bone homeostasis.
基金Projects(21577176,41271330) supported by the National Natural Science Foundation of China
文摘The pyrolysis of phytoremediated giant reed(Arundo donax)biomass could cause secondary pollution of heavy metals.The stabilization of heavy metals in the pyrolysis process with external materials such as Al2O3,CaCO3,FeCl3and NaOH,wasstudied.The results showed that37%As and97%Cd in biochar were stabilized when giant reed powder was pyrolyzed at250°Cwith5%Al2O3for2h.Furthermore,59%Pb in biochar was stabilized at400°C with5%CaCO3for1h.Under biochar produced inoptimized pyrolysis conditions,Cd mainly existed in a residual fraction,while Pb and As mainly existed in oxidizable fraction inBCR analysis.In XRD analysis,As was only found in Ca2As2O7;Cd in biochar mainly existed in Cd(AlCl4)2,CdPbO3or CdSO3;and Pb mainly existed as Pb3O2SO4.
基金supported by National Natural Science Foundation of China(61100159,61233007)National High Technology Research and Development Program of China(863 Program)(2011AA040103)+2 种基金Foundation of Chinese Academy of Sciences(KGCX2-EW-104)Financial Support of the Strategic Priority Research Program of Chinese Academy of Sciences(XDA06021100)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation,of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Grid Energy Management System for Micro-smart Grid
基金partially supported by National Key Research and Development Program of China(2018YFB1700200)National Natural Science Foundation of China(61972389,61903356,61803368,U1908212)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,National Science and Technology Major Project(2017ZX02101007-004)Liaoning Provincial Natural Science Foundation of China(2020-MS-034,2019-YQ-09)China Postdoctoral Science Foundation(2019M661156)。
文摘Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.
基金Supported by the Natural Science Foundation of Guangdong Province(No.2015A030313019)the Sun Yat-sen Clinical Research Cultivation Project(No.SYS-C-201705)。
文摘AIM:To quantitatively evaluate the effect of the combined use of 577-nm subthreshold micropulse macular laser(SML)and multi-point mode pan retinal laser photocoagulation(PRP)on severe non-proliferative diabetic retinopathy(NPDR)with central-involved diabetic macular edema(CIDME)using optical coherence tomography angiography(OCTA).METHODS:In this observational clinical study,86 eyes of 86 NPDR patients with CIDME who underwent SML and PRP treatment were included.Images were obtained 1 d before laser and post-laser(1 d,1 wk,1,3,and 6 mo)using AngioV ue software 2.0.Best corrected visual acuity(BCVA,LogM AR),foveal avascular zone area(FAZ),choriocapillary flow area(Ch F),parafoveal vessel density(PVD),capillary density inside disc(CDD),peripapillary capillary density(PCD),macular ganglion cell complex thickness(m GCCT),central macular thickness(CMT),and subfoveal choroidal thickness(ChT)were compared between pre-and post-laser treatment.RESULTS:BCVA remained stable during 6 mo postlaser therapy(pre-laser vs 6 mo post-laser:0.53±0.21 vs 0.5±0.15,P>0.05).PVD,ChF,ChT,CMT,and mGCCT significantly increased 1 d post-laser therapy[pre-laser vs 1 d post-laser:superficial PVD(%),40.51±3.42 vs 42.43±4.68;deep PVD(%),42.66±3.67 vs 44.78±4.52;ChF,1.72±0.21 vs 1.9±0.12 mm^2;ChT,302.45±69.74 vs 319.38±70.93μm;CMT,301.65±110.78 vs 320.86±105.62μm;m GCCT,105.71±10.72 vs 115.46±9.64μm;P<0.05].However,PVD,ChF and ChT decreased to less than baseline level at 6 mo postlaser therapy(pre-laser vs 6 mo post-laser:superficial PVD(%),40.51±3.42 vs 36.32±4.19;deep PVD(%),42.66±3.67 vs 38.76±3.74;Ch F,1.72±0.21 vs 1.62±0.09 mm^2;Ch T,302.45±69.74 vs 289.61±67.55μm;P<0.05),whereas CMT and mG CCT decreased to baseline level at 6 mo postlaser therapy(CMT,301.65±110.78 vs 297.77±90.23μm;m GCCT,105.71±10.72 vs 107.05±11.81μm;P>0.05).Moreover,FAZ continuously increased while CDD and PCD continuously decreased in 6 mo after laser therapy.CMT and ChT had a significant positive correlation with ChF and PVD in most post-laser stages.CONCLUSION:During a 6-month follow-up period after combined use of SML and PRP therapy,BCVA remained stable and there was a decreased trend in macular edema.Blood flow increased at 1 d post-laser therapy and reduced at 6 mo post-laser therapy.