Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extracti...Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron im- aging to measure the spontaneous imbibition of water into fractures of Eagle Ford shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order diffe- rential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective con- tact angles that were slightly higher than static contact angles due to effects of in-situ changes in veloci- ty, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that aver- age fracture widths are not satisfactory for modeling imbibition in natural systems.展开更多
基金supported as part of the Center for Nanoscale Controls on Geologic CO_2 (NCGC)an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (No. DE-AC0205CH11231)+2 种基金a graduate fellowship through the Bredesen Center for Interdisciplinary Research at the University of Tennesseesupported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences DivisionEdmund Perfect ’s research was sponsored by the Army Research Laboratory (No.W911NF-16-1-0043)
文摘Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron im- aging to measure the spontaneous imbibition of water into fractures of Eagle Ford shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order diffe- rential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective con- tact angles that were slightly higher than static contact angles due to effects of in-situ changes in veloci- ty, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that aver- age fracture widths are not satisfactory for modeling imbibition in natural systems.