期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种面向边缘计算的高效异步联邦学习机制 被引量:19
1
作者 芦效峰 廖钰盈 +1 位作者 pietro lio Pan Hui 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2571-2582,共12页
随着物联网和移动设备性能的不断提高,一种新型计算架构——边缘计算——应运而生.边缘计算的出现改变了数据需要集中上传到云端进行处理的局面,最大化利用边缘物联网设备的计算和存储能力.边缘计算节点对本地数据进行处理,不再需要把... 随着物联网和移动设备性能的不断提高,一种新型计算架构——边缘计算——应运而生.边缘计算的出现改变了数据需要集中上传到云端进行处理的局面,最大化利用边缘物联网设备的计算和存储能力.边缘计算节点对本地数据进行处理,不再需要把大量的本地数据上传到云端进行处理,减少了数据传输的延时.在边缘网络设备上进行人工智能运算的需求也在逐日增大,因为联邦学习机制不需要把数据集中后进行模型训练,所以更适合于节点平均数据量有限的边缘网络机器学习的场景.针对以上挑战,提出了一种面向边缘网络计算的高效异步联邦学习机制(efficient asynchronous federated learning mechanism for edge network computing,EAFLM),根据自适应的阈值对训练过程中节点与参数服务器之间的冗余通信进行压缩.其中,双重权重修正的梯度更新算法,允许节点在学习的任何过程中加入或退出联邦学习.实验显示提出的方法将梯度通信压缩至原通信次数的8.77%时,准确率仅降低0.03%. 展开更多
关键词 联邦学习 边缘计算 异步分布式学习 梯度压缩 隐私保护
下载PDF
Offloading Mobile Data from Cellular Networks Through Peer-to-Peer WiFi Communication:A Subscribe-and-Send Architecture 被引量:1
2
作者 芦效峰 HUI Pan pietro lio 《China Communications》 SCIE CSCD 2013年第6期35-46,共12页
Currently cellular networks do not have sufficient capacity to accommodate the exponential growth of mobile data requirements.Data can be delivered between mobile terminals through peer-to-peer WiFi communications(e.g... Currently cellular networks do not have sufficient capacity to accommodate the exponential growth of mobile data requirements.Data can be delivered between mobile terminals through peer-to-peer WiFi communications(e.g.WiFi direct),but contacts between mobile terminals are frequently disrupted because of the user mobility.In this paper,we propose a Subscribe-and-Send architecture and an opportunistic forwarding protocol for it called HPRO.Under Subscribe-and-Send,a user subscribes contents on the Content Service Provider(CSP) but does not download the subscribed contents.Some users who have these contents deliver them to the subscribers through WiFi opportunistic peer-to-peer communications.Numerical simulations provide a robust evaluation of the forwarding performance and the traffic offloading performance of Subscribe-and-Send and HPRO. 展开更多
关键词 mobile Internet cellular networks offioad opportunistic routing delay tolerant networks peer-to-peer WiFi
下载PDF
High Delivery Performance Opportunistic Routing Scheme for Delay Tolerant Networks 被引量:1
3
作者 Lu Xiaofeng Pan Hui pietro lio 《China Communications》 SCIE CSCD 2012年第6期145-153,共9页
In Delay Tolerant Networks (DTNs), establishing routing path from a source node to a destination node may not be possible, so the opportunistic routings are widely used. The energy and buffer constraints are general i... In Delay Tolerant Networks (DTNs), establishing routing path from a source node to a destination node may not be possible, so the opportunistic routings are widely used. The energy and buffer constraints are general in DTNs composed of the mobile phones or Pads. This paper proposes a novel opportunistic routing protocol, denoted by Large Opporturioty (LAOP), for the energy and buffer constrained DTNs. The objective of LAOP is to reach many receivers of a message with a small number of transmissions. By LAOP, the sender floods a message when the number of its neighbors is not less than a threshold. We compare the delivery performance of LAOP with other four widely used Delay or Disruption Tolerant Network (DTN) routing protocols, Direct Delivery, Epidemic routing, SprayAndWait and PRoPHET and demonstrate that LAOP can improve the delivery performance and decrease the delivery latency simultaneously. 展开更多
关键词 computer networks DTNs LAOP opportunistic routing
下载PDF
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
4
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 pietro lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 MULTI-SCALE Principal Component Analysis Discrete WAVELET TRANSFORM FEATURE Extraction Signal CLASSIFICATION Empirical CLASSIFICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部