A modified exponentially weighted moving average (EWMA) scheme is one of the quality control charts suchthat this control chart can quickly detect a small shift. The average run length (ARL) is frequently used for the...A modified exponentially weighted moving average (EWMA) scheme is one of the quality control charts suchthat this control chart can quickly detect a small shift. The average run length (ARL) is frequently used for theperformance evaluation on control charts. This paper proposes the explicit formula for evaluating the average runlength on a two-sided modified exponentially weighted moving average chart under the observations of a first-orderautoregressive process, referred to as AR(1) process, with an exponential white noise. The performance comparisonof the explicit formula and the numerical integral technique is carried out using the absolute relative change forchecking the correct formula and the CPU time for testing speed of calculation. The results show that the ARL ofthe explicit formula and the numerical integral equation method are hardly different, but this explicit formula ismuch faster for calculating the ARL and offered accurate values. Furthermore, the cumulative sum, the classicalEWMA and the modified EWMA control charts are compared and the results show that the latter is better for smalland intermediate shift sizes. In addition, the explicit formula is successfully applied to real-world data in the healthfield as COVID-19 data in Thailand and Singapore.展开更多
基金The research was supported by King Mongkut’s University of Technology North Bangkok Contract No.KMUTNB-62-KNOW-018.
文摘A modified exponentially weighted moving average (EWMA) scheme is one of the quality control charts suchthat this control chart can quickly detect a small shift. The average run length (ARL) is frequently used for theperformance evaluation on control charts. This paper proposes the explicit formula for evaluating the average runlength on a two-sided modified exponentially weighted moving average chart under the observations of a first-orderautoregressive process, referred to as AR(1) process, with an exponential white noise. The performance comparisonof the explicit formula and the numerical integral technique is carried out using the absolute relative change forchecking the correct formula and the CPU time for testing speed of calculation. The results show that the ARL ofthe explicit formula and the numerical integral equation method are hardly different, but this explicit formula ismuch faster for calculating the ARL and offered accurate values. Furthermore, the cumulative sum, the classicalEWMA and the modified EWMA control charts are compared and the results show that the latter is better for smalland intermediate shift sizes. In addition, the explicit formula is successfully applied to real-world data in the healthfield as COVID-19 data in Thailand and Singapore.