期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
The mechanical behavior of nanoscale metallic multilayers:A survey 被引量:3
1
作者 q.zhou J.Y.Xie +3 位作者 F.Wang P.Huang K.W.Xu T.J.Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期319-337,共19页
The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces exi... The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of micro- laminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size- dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plas- tic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engi- neers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qual- ities the interfaces in NMMs display at atomic scale. 展开更多
关键词 MULTILAYER INTERFACE MICROSTRUCTURE Mechanical behavior
下载PDF
井间电磁波成像用于储层监测 被引量:1
2
作者 q.zhou P.Henshaw 朱振宇 《国外油气勘探》 2000年第4期502-510,共9页
储层监测的主要任务之一是确定注入液的位置及其流动方向。井间电磁波成像(EM)是一种用于储层管理的新技术,尤其是用于提高石油采收率(EOR)期间对流体在井间范围内的流动进行成像和监测。井间电磁波成像与传统的测井的区别在于它可以对... 储层监测的主要任务之一是确定注入液的位置及其流动方向。井间电磁波成像(EM)是一种用于储层管理的新技术,尤其是用于提高石油采收率(EOR)期间对流体在井间范围内的流动进行成像和监测。井间电磁波成像与传统的测井的区别在于它可以对井间空间成像而不只是对井孔周围较小的体积范围成像。由井间电磁波技术而获得的电导率(电阻率的倒数)图像与储层特征参数(如含水饱和度、矿化度及孔隙度)直接相关。井间电导率成像能够揭示监测井之间从前无法接近区域的地层详细信息。电导率图像对于岩石孔隙流体(水或油)的变化尤其敏感,因此与地震速度和衰减测量这类对岩石骨架的物理性质的变化更加敏感的技术不同,电磁波和地震成像方法可互为补充用于增强储层监测。井间电磁波的理论和所使用仪器都已获得了显著进展,对于流体监测,在EOR过程中于不同的时间使用电导率成像可提供关于油、水和水蒸汽运动的信息;不久前在Lawrence Lvermore国家实验室的合作下,在Chevron的水蒸汽注入场地进行了现场实验。时间推移测量清楚地表明了由于注入(蒸汽)而导致的异常电导体的运移。本文主要论述这一方法的应用、物理理解和资料处理。人们发现分辨率依赖于数据采样、空间覆盖和操作频率。另外,基于测井和其它地质资料的约束条件,只要在反演中能够获得,就应该用于优化成像质量。从理论上和现场实验中,井间电磁波成像被证明是储层监测中具潜在价值的一项技术。 展开更多
关键词 储集层 井间电磁波成像 油气田测量 测井
下载PDF
RETINAL NERVE FIBER LAYER MEA-SUREMENTS ARE NOT CHANGED FOL-LOWING LASER IN-SITU KERATOMILEU-SIS (LASIK) FOR HIGH MYOPIA AS MEA-SURED BY SCANNING LASER PO-LARIMETRY WITH CUSTOM COMPENSA-TION FOR ANTERIOR SEGMENT BIRE-FRINGENCE
3
作者 N.T.Choplin S.C.Schallhorn +3 位作者 D.Tanzer J.L.Tidwell q.zhou M.Sinai 《国际眼科杂志》 CAS 2003年第1期59-59,共1页
Purpose: Scanning laser polarimetry (SLP) estimates retinal nerve fiber layer (RNFL) thickness through measurement of retardation of polarized light passing through the birefringent RNFL and cornea. A variable compens... Purpose: Scanning laser polarimetry (SLP) estimates retinal nerve fiber layer (RNFL) thickness through measurement of retardation of polarized light passing through the birefringent RNFL and cornea. A variable compensation method is incorporated to eliminate the anterior segment contribution to the total birefringence measured. LASIK is a technique that corrects myopia by ablating corneal tissue. This study evaluated RNFL mea- 展开更多
关键词 LASIK 高度近视 术后 视网膜神经纤维层厚度 扫描激光旋光法 测量 补偿
下载PDF
Measurements of the center-of-mass energies of e^(+)e^(-)collisions at BESIII 被引量:1
4
作者 M.Ablikim M.N.Achasov +511 位作者 P.Adlarson S.Ahmed M.Albrecht R.Aliberti A.Amoroso M.R.An Q.An X.H.Bai Y.Bai O.Bakina R.Baldini Ferroli I.Balossino Y.Ban K.Begzsuren N.Berger M.Bertani D.Bettoni F.Bianchi J.Bloms A.Bortone I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.Chelkov D.Y.Chen G.Chen H.S.Chen M.L.Chen S.J.Chen X.R.Chen Y.B.Chen Z.J.Chen W.S.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai X.C.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong X.Dong S.X.Du Y.L.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng M.Fritsch C.D.Fu Y.Gao Y.Gao Y.Gao Y.G.Gao I.Garzia P.T.Ge C.Geng E.M.Gersabeck A Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu Y.T.Gu C.Y Guan A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov T.T.Han W.Y.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius C.H.Heinz T.Held Y.K.Heng C.Herold M.Himmelreich T.Holtmann G.Y.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang L.Q.Huang X.T.Huang Y.P.Huang Z.Huang T.Hussain N Husken W.Ikegami Andersson W.Imoehl M.Irshad S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji Y.Y.Ji H.B.Jiang X.S.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.G.Kurth W.Kuhn J.J.Lane J.S.Lange P.Larin A.Lavania L.Lavezzi Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.Li H.B.Li H.J.Li J.L.Li J.Q.Li J.S.Li Ke Li L.K.Li Lei Li P.R.Li S.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li Xiaoyu Li Z.Y.Li H.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L. Z. Liao J.Libby C.X.Lin B.J.Liu C.X.Liu D.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.L.Liu J.Y.Liu K.Liu K.Y.Liu L.Liu M.H.Liu P.L.Liu Q.Liu Q.Liu S.B.Liu Shuai Liu T.Liu W.M.Liu X.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.D.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma R.T.Ma X.X.Ma X.Y.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri T.J.Min R.E.Mitchell X.H.Mo N.Yu.Muchnoi H.Muramatsu S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak A.Pathak P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping S.Pogodin R.Poling V.Prasad H.Qi H.R.Qi K.H.Qi M.Qi T.Y.Qi S.Qian W.B.Qian Z.Qian C.F.Qiao L.Q.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid K.Ravindran C.F.Redmer A.Rivetti V.Rodin M.Rolo G.Rong Ch.Rosner M.Rump H.S.Sang A.Sarantsev Y.Schelhaas C.Schnier K.Schoenning M.Scodeggio D.C.Shan W.Shan X.Y.Shan J.F.Shangguan M.Shao C.P.Shen H.F.Shen P.X.Shen X.Y.Shen H.C.Shi R.S.Shi X.Shi X.D Shi J.J.Song W.M.Song Y.X.Song S.Sosio S.Spataro K.X.Su P.P.Su F.F.Sui G.X.Sun H.K.Sun J.F.Sun L.Sun S.S.Sun T.Sun W.Y.Sun W.Y.Sun X Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.T.Sun Y.H.Tan Y.X.Tan C.J.Tang G.Y.Tang J.Tang J.X.Teng V.Thoren W.H.Tian Y.T.Tian I.Uman B.Wang C.W.Wang D.Y.Wang H.J.Wang H.P.Wang K.Wang L.L.Wang M.Wang M.Z.Wang Meng Wang W.Wang W.H.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.Wang Y.D.Wang Y.F.Wang Y.Q.Wang Y.Y.Wang Z.Wang Z.Y.Wang Ziyi Wang Zongyuan Wang D.H.Wei F.Weidner S.P.Wen D.J.White U.Wiedner G.Wilkinson M.Wolke L.Wollenberg J.F.Wu L.H.Wu L.J.Wu X.Wu Z.Wu L.Xia H.Xiao S.Y.Xiao Z.J.Xiao X.H.Xie Y.G.Xie Y.H.Xie T.Y.Xing G.F.Xu Q.J.Xu W.Xu X.P.Xu Y.C.Xu F.Yan L.Yan W.B.Yan W.C.Yan Xu Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.X.Yang Yifan Yang Zhi Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu C. Z. Yuan L.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar X.Zeng Zeng Y.Zeng A.Q.Zhang B.X.Zhang Guangyi Zhang H.Zhang H.H.Zhang H.H.Zhang H.Y.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang Jiawei Zhang L.M.Zhang L.Q.Zhang Lei Zhang S.Zhang S.F.Zhang Shulei Zhang X.D.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Yan Zhang Yao Zhang Z.Y.Zhang G.Zhao J.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.H.Zheng B.Zhong C.Zhong L.P.Zhou q.zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu T.J.Zhu W.J.Zhu W.J.Zhu Y.C.Zhu Z.A.Zhu B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第10期7-15,共9页
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ... During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period. 展开更多
关键词 center-of-mass ENERGY e^(+)e^(-) ANNIHILATION BESIII
原文传递
Future Physics Programme of BESⅢ 被引量:540
5
作者 M.Ablikim M.N.Achasov +486 位作者 P.Adlarson S.Ahmed M.Albrecht M.Alekseev A.Amoroso F.F.An Q.An Y.Bai O.Bakina R.Baldini Ferroli Y.Ban K.Begzsuren J.V.Bennett N.Berger M.Bertani D.Bettoni F.Bianchi J Biernat J.Bloms I.Boyko R.A.Briere L.Calibbi H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.Chai J.F.Chang W.L.Chang J.Charles G.Chelkov Chen G.Chen H.S.Chen J.C.Chen M.L.Chen S.J.Chen Y.B.Chen H.Y.Cheng W.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai J.P.Dai X.C.Dai A.Dbeyssi D.Dedovich Z.Y.Deng A.Denig Denysenko M.Destefanis S.Descotes-Genon F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du S.I.Eidelman J.Z.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng M.Fritsch C.D.Fu Y.Fu Q.Gao X.L.Gao Y.Gao Y.Gao Y.G.Gao Z.Gao B.Garillon I.Garzia E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu Y.T.Gu A.Q.Guo F.K.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov S.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius T.Held Y.K.Heng Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang N.Huesken T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.L.Jiang X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk T.Khan A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.Kurth M.G.Kurth W.Kuhn J.S.Lange P.Larin L.Lavezzi H.Leithoff T.Lenz C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li L.K.Li Lei Li P.L.Li P.R.Li Q.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li X.N.Li X.Q.Li Z.B.Li H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao J.Libby C.X.Lin D.X.Lin Y.J.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Y.Liu Ke Liu Q.Liu S.B.Liu T.Liu X.Liu X.Y.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri J.Min T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo C.Morales Morales N.Yu.Muchnoi H.Muramatsu A.Mustafa S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Niu S.L.Olsen Q.Ouyang S.Pacetti Y.Pan M.Papenbrock P.Patteri M.Pelizaeus H.P.Peng K.Peters A.A.Petrov J.Pettersson J.L.Ping R.G.Ping A.Pitka R.Poling V.Prasad M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid C.F.Redmer M.Richter M.Ripka A.Rivetti V.Rodin M.Rolo G.Rong J.L.Rosner Ch.Rosner M.Rump A.Sarantsev M.Savrie K.Schoenning W.Shan X.Y.Shan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi X.D Shi J.J.Song Q.Q.Song X.Y.Song S.Sosio C.Sowa S.Spataro F.F.Sui G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T Tan C.J.Tang G.Y.Tang X.Tang V.Thoren B.Tsednee I.Uman B.Wang B.L.Wang C.W.Wang D.Y.Wang H.H.Wang K.Wang L.L.Wang L.S.Wang M.Wang M.Z.Wang Wang Meng P.L.Wang R.M.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang T.Weber D.H.Wei P.Weidenkaff H.W.Wen S.P.Wen U.Wiedner G.Wilkinson M.Wolke L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia S.Y.Xiao Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie T.Y.Xing X.A.Xiong Q.L.Xiu G.F.Xu L.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang R.X.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan X.Q.Yuan Y.Yuan A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yi Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Q.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.Zheng Y.H.Zheng B.Zhong L.Zhou L.P.Zhou q.zhou X.Zhou X.K.Zhou Xingyu Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu W.J.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2020年第4期I0001-I0004,1-102,共106页
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac... There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity. 展开更多
关键词 MESON HADRON optimization
原文传递
Study of BESIII trigger efficiencies with the 2018 J/ψ data 被引量:36
6
作者 M.Ablikim M.N.Achasov +501 位作者 P.Adlarson S.Ahmed M.Albrecht R.Aliberti A.Amoroso M.R.An Q.An X.H.Bai Y.Bai O.Bakina R.Baldini Ferroli I.Balossino Y.Ban K.Begzsuren N.Berger M.Bertani D.Bettoni F.Bianchi J.Bloms A.Bortone I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.Chelkov D.Y.Chen G.Chen H.S.Chen M.L.Chen S.J.Chen X.R.Chen Y.B.Chen Z.J Chen W.S.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai X.C.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong X.Dong S.X.Du Y.L.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng M.Fritsch C.D.Fu Y.Gao Y.Gao Y.Gao Y.G.Gao I.Garzia P.T.Ge C.Geng E.M.Gersabeck A Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu S.Gu Y.T.Gu C.Y Guan A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov T.T.Han W.Y.Han X.Q.Hao F.A.Harris H Hüsken K.L.He F.H.Heinsius C.H.Heinz T.Held Y.K.Heng C.Herold M.Himmelreich T.Holtmann Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang L.Q.Huang X.T.Huang Y.P.Huang Z.Huang T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.B.Jiang X.S.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.G.Kurth W.Kühn J.J.Lane J.S.Lange P.Larin A.Lavania L.Lavezzi Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.Li H.B.Li H.J.Li J.L.Li J.Q.Li J.S.Li Ke Li L.K.Li Lei Li P.R.Li S.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li Z.Y.Li H.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang L.Z.Liao J.Libby C.X.Lin B.J.Liu C.X.Liu D.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.L.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu M.H.Liu P.L.Liu Q.Liu Q.Liu S.B.Liu Shuai Liu T.Liu W.M.Liu X.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.D.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo b P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma R.T.Ma X.X.Ma X.Y.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo N.Yu.Muchnoi H.Muramatsu S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping R.Poling V.Prasad H.Qi H.R.Qi K.H.Qi M.Qi T.Y.Qi T.Y.Qi S.Qian W.-B.Qian Z.Qian C.F.Qiao L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid K.Ravindran C.F.Redmer A.Rivetti V.Rodin M.Rolo G.Rong Ch.Rosner M.Rump H.S.Sang A.Sarantsev Y.Schelhaas C.Schnier K.Schoenning M.Scodeggio D.C.Shan W.Shan X.Y.Shan J.F.Shangguan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.C.Shi R.S.Shi X.Shi X.D Shi W.M.Song Y.X.Song S.Sosio S.Spataro K.X.Su P.P.Su F.F.Sui G.X.Sun H.K.Sun J.F.Sun L.Sun S.S.Sun T.Sun W.Y.Sun X Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.T.Sun Y.H.Tan Y.X.Tan C.J.Tang G.Y.Tang J.Tang J.X.Teng V.Thoren I.Uman B.Wang C.W.Wang D.Y.Wang H.J.Wang H.P.Wang K.Wang L.L.Wang M.Wang M.Z.Wang Meng Wang W.Wang W.H.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.D.Wang Y.F.Wang Y.Q.Wang Y.Y.Wang Z.Wang Z.Y.Wang Ziyi Wang Zongyuan Wang D.H.Wei P.Weidenkaff F.Weidner S.P.Wen D.J.White U.Wiedner G.Wilkinson M.Wolke L.Wollenberg J.F.Wu L.H.Wu L.J.Wu X.Wu Z.Wu L.Xia H.Xiao S.Y.Xiao Z.J.Xiao X.H.Xie Y.G.Xie Y.H.Xie T.Y.Xing G.F.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Xu Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.X.Yang Yifan Yang Zhi Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu C.Z.Yuan L.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang Guangyi Zhang H.Zhang H.H.Zhang H.Y.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang Jiawei Zhang L.Q.Zhang Lei Zhang S.Zhang S.F.Zhang Shulei Zhang X.D.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yan Zhang Yao Zhang Yi Zhang Z.H.Zhang Z.Y.Zhang G.Zhao J.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.Zheng Y.H.Zheng B.Zhong C.Zhong L.P.Zhou q.zhou X.Zhou X.K.Zhou X.R.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu T.J.Zhu W.J.Zhu W.J.Zhu Y.C.Zhu Z.A.Zhu B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期48-55,共8页
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na... Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses. 展开更多
关键词 BESIII trigger efficiency Bhabha dimuon hadronic events
原文传递
Effect of Ni Content on Mechanical Properties and Corrosion Behavior of Al/Sn-9Zn-xNi/Cu Joints 被引量:12
7
作者 M.L.Huang N.Kang +1 位作者 q.zhou Y.Z.Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第9期844-852,共9页
The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu s... The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution. 展开更多
关键词 Al-Cu disslmilar-metal solder joint Sn-9Zn-xNi Microstructure Mechanicalproperties Electrochemical corrosion Corrosion potential
原文传递
Number of J/ψ events at BESIII 被引量:1
8
作者 M.Ablikim M.N.Achasov +516 位作者 P.Adlarson S.Ahmed M.Albrecht R.Aliberti A.Amoroso M.R.An Q.An X.H.Bai Y.Bai O.Bakina R.Baldini Ferroli I.Balossino Y.Ban K.Begzsuren N.Berger M.Bertani D.Bettoni F.Bianchi J.Bloms A.Bortone I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.Chelkov G.Chen H.S.Chen M.L.Chen S.J.Chen X.R.Chen Y.B.Chen Z.J.Chen W.S.Cheng G.Cibinetto F.Cossio J.J.Cui X.F.Cu H.L.Dai J.P.Dai X.C.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong X.Dong S.X.Du P.Egorov Y.L.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng M.Fritsch C.D.Fu Y.Gao Y.Gao I.Garzia P.T.Ge C.Geng E.M.Gersabeck A Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu C..Y.Guan A.Q.Guo A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov T.T.Han W.Y.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold M.Himmelreich T.Holtmann G.Y.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang L.Q.Huang X.T.Huang Y.P.Huang Z.Huang T.Hussain N Husken W.Ikegami Andersson W.Imoehl M.Irshad S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji Y.Y.Ji H.B.Jiang X.S.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.G.Kurth W.Kuhn J.J.Lane J.S.Lange P.Larin A.Lavania L.Lavezzi Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.Li H.B.Li H.J.Li H.N.Li J.L.Li J.Q.Li J.S.Li Ke Li L.K.Li Lei Li P.R.Li S.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li Xiaoyu Li Z.Y.Li H.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao J.Libby A.Limphirat C.X.Lin D.X.Lin T.Lin B.J.Liu C.X.Liu D.Liu F.H.Liu Fang Liu Feng Liu G.M.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.L.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu M.H.Liu P.L.Liu Q.Liu Q.Liu S.B.Liu T.Liu T.Liu W.M.Liu X.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.D.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma R.T.Ma X.X.Ma X.Y.Ma Y.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri T.J.Min R.E.Mitchell X.H.Mo N.Yu.Muchnoi H.Muramatsu S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak A.Pathak P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping S.Plura S.Pogodin R.Poling V.Prasad H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian Z.Qian C.F.Qiao J.J.Qin L.Q.Qin X.P.Qi X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid K.Ravindran C.F.Redmer A.Rivetti V.Rodin M.Rolo G.Rong Ch.Rosner M.Rump H.S.Sang A.Sarantsev Y.Schelhaas C.Schnier K.Schoenning M.Scodeggio W.Shan X.Y.Shan J.F.Shangguan M.Shao C.P.Shen H.F.Shen X.Y.Shen H.C.Shi R.S.Shi X.Shi X.D Shi J.J.Song W.M.Song Y.X.Song S.Sosio S.Spataro F.Stieler K.X.Su P.P.Su G.X.Sun H.K.Sun J.F.Sun L.Sun S.S.Sun T.Sun W.Y.Sun X.Sun Y.J.Sun Y.Z.Sun Z.T.Sun Y.H.Tan Y.X.Tan C.J.Tang G.Y.Tang J.Tang Q.T.Tao J.X.Teng V.Thoren W.H.Tian Y.T.Tian I.Uman B.Wang C.W.Wang D.Y.Wang H.J.Wang H.P.Wang K.Wang L.L.Wang M.Wang M.Z.Wang Meng Wang S.Wang W.Wang W.H.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.D.Wang Y.F.Wang Y.Q.Wang Y.Y.Wang Z.Wang Z.Y.Wang Ziyi Wang Zongyuan Wang D.H.Wei F.Weidner S.P.Wen D.J.White U.Wiedner G.Wilkinson M.Wolke L.Wollenberg J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Z.Wu L.Xia T.Xiang H.Xiao S.Y.Xiao Z.J.Xiao X.H.Xie Y.G.Xie Y.H.Xi T.Y.Xing C.J.Xu G.F.Xu Q.J.Xu W.Xu X.P.Xu Y.C.Xu F.Yan L.Yan W.B.Yan W.C.Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.X.Yang Yifan Yang Zhi Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Y G.Yu J.S.Yu T.Yu C.Z.Yuan L.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar X.Zeng Zeng Y.Zeng A.Q.Zhang B.X.Zhang G.Y.Zhang H.Zhang H.H.Zhang H.H.Zhang H.Y.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang Jiawei Zhang L.M.Zhang L.Q.Zhang Lei Zhang S.Zhang S.F.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Yan Zhang Yao Zhang Z.Y.Zhang G.Zhao J.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.H.Zheng B.Zhong C.Zhong L.P.Zhou q.zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu T.J.Zhu W.J.Zhu W.J.Zhu Y.C.Zhu Z.A.Zhu B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2022年第7期74-84,共11页
Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalcul... Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible. 展开更多
关键词 number of J/ψevents BESIII detector inclusive J/ψdecays
原文传递
Application Prospect of Fission-Powered Spacecraft in Solar System Exploration Missions 被引量:1
9
作者 Y.Xia J.Li +3 位作者 R.Zhai J.Wang B.Lin q.zhou 《Space(Science & Technology)》 2021年第1期309-323,共15页
Fission power is a promising technology,and it has been proposed for several future space uses.It is being considered for highpower missions whose goal is to explore the solar system and even beyond.Space fission powe... Fission power is a promising technology,and it has been proposed for several future space uses.It is being considered for highpower missions whose goal is to explore the solar system and even beyond.Space fission power has made great progress when NASA’s 1 kWe Kilowatt Reactor Using Stirling TechnologY(KRUSTY)prototype completed a full power scale nuclear test in 2018.Its success stimulated a new round of research competition among the major space countries.This article reviews the development of the Kilopower reactor and the KRUSTY system design.It summarizes the current missions that fission reactors are being considered as a power and/or propulsion source.These projects include visiting Jupiter and Saturn systems,Chiron,and Kuiper belt object;Neptune exploration missions;and lunar and Mars surface base missions.These studies suggest that the Fission Electric Propulsion(FEP)/Fission Power System(FPS)is better than the Radioisotope Electric Propulsion(REP)/Radioisotope Power System(RPS)in the aspect of cost for missions with a power level that reaches~1 kWe,and when the power levels reaches~8 kWe,it has the advantage of lower mass.For a mission that travels further than~Saturn,REP with plutonium may not be cost acceptable,leaving FEP the only choice.Surface missions prefer the use of FPS because it satisfies the power level of 10’s kWe,and FPS vastly widens the choice of possible landing location.According to the current situation,we are expecting a flagship-level fission-powered space exploration mission in the next 1-2 decades. 展开更多
关键词 satis SATURN ISOTOPE
原文传递
Observation of e^+e^-→D_s^+■^((*)0)K^- and study of the P-wave D_s mesons
10
作者 M.Ablikim M.N.Achasov +446 位作者 S.Ahmed M.Albrecht M.Alekseev A.Amoroso F.F.An Q.An Y.Bai O.Bakina R.Baldini Ferroli Y.Ban K.Begzsuren D.W.Bennett J.V.Bennett N.Berger M.Bertani D.Bettoni F.Bianchi I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao S.A.Cetin J.Chai J.F.Chang W.L.Chang G.Chelkov G.Chen H.S.Chen J.C.Chen M.L.Chen S.J.Chen Y.B.Chen W.S.Cheng G.Cibinetto F.Cossio H.L.Dai J.P.Dai A.Dbeyssi D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du J.Z.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng M.Fritsch C.D.Fu Y.Fu Q.Gao X.L.Gao Y.N.Gao Y.G.Gao Z.Gao B.Garillon I.Garzia A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu S.Gu Y.T.Gu A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov Z.Haddadi S.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius T.Held Y.K.Heng Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang N.Huesken T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.L.Jiang X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang M.Kavatsyuk B.C.Ke I.K.Keshk T.Khan A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.Kurth W.Kühn J.S.Lange P.Larin L.Lavezzi H.Leithoff C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li L.K.Li Lei Li P.L.Li P.R.Li Q.Y.Li W.D.Li W.G.Li X.L.Li X.N.Li X.Q.Li Z.B.Li H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao J.Libby C.X.Lin D.X.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.L Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Y.Liu Kai Liu Ke Liu Q.Liu S.B.Liu X.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Maldaner Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri J.Min T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo C.Morales Morales N.Yu.Muchnoi H.Muramatsu A.Mustafa S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Niu S.L.Olsen Q.Ouyang S.Pacetti Y.Pan M.Papenbrock P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping A.Pitka R.Poling V.Prasad M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid C.F.Redmer M.Richter M.Ripka M.Rolo G.Rong Ch.Rosner M.Rump A.Sarantsev M.Savrié K.Schoenning W.Shan X.Y.Shan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi J.J.Song X.Y.Song S.Sosio C.Sowa S.Spataro F.F.Sui G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T Tan C.J.Tang G.Y.Tang X.Tang M.Tiemens B.Tsednee I.Uman B.Wang B.L.Wang C.W.Wang D.Y.Wang H.H.Wang K.Wang L.L.Wang L.S.Wang M.Wang Meng Wang P.Wang P.L.Wang R.M.Wang W.P.Wang X.F.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang T.Weber D.H.Wei P.Weidenkaff S.P.Wen U.Wiedner M.Wolke L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie X.A.Xiong Q.L.Xiu G.F.Xu L.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang R.X.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan Y.Yuan A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.H.Zheng B.Zhong L.Zhou q.zhou X.Zhou X.K.Zhou X.R.Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2019年第3期5-16,共12页
Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detecto... Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detector at s^(1/2)=4.600 GeV. The processes of e^+e^-→D_s^+■^(*0)K^- and D_s^+■~0K^- are observed for the first time and are found to be dominated by the modes D_s^+D_(s1)(2536)^-and D_s^+D_(s2)~*(2573)^-, respectively. The Born cross sections are measured to be σ~B(e^+e^-→D_s^+■^(*0)K^-) =(10.1±2.3±0.8) pb and σ~B(e^+e^-→D_s^+■~0K^-) =(19.4±2.3± 1.6) pb, and the products of Born cross section and the decay branching fraction are measured to be σ~B(e^+e^-→D_s^+D_(s1)(2536)^-+c.c.)·B(D_(s1)(2536)^-→■^(*0)K^-)=(7.5±1.8±0.7) pb and σ~B(e^+e^-→D_s^+D_(s2)~*(2573)^-+ c.c.)·B(D_(s2)~*(2573)^-→■~0 K^-)=(19.7 ± 2.9 ±2.0) pb. For the D_(s1)(2536)^-and D_(s2)~*(2573)^-mesons, the masses and widths are measured to be M(D_(s1)(2536)^-)=(2537.7±0.5 ±3.1) MeV/c2, Γ(D_(s1)(2536)^-) =(1.7 ±1.2 ±0.6)MeV, and M(D_(s2)~*(2573)^-)=(2570.7±2.0 ±1.7) MeV/c^2, Γ(D_(s2)~*(2573)^-)=(17.2 ±3.6 ±1.1) MeV. The spin-parity of the D_(s2)~*(2573)^-meson is determined to be J^p= 2^+. In addition, the processes e^+e^-→D_s^+■^((*)0)K^-are searched for using the data samples taken at four(two) center-of-mass energies between 4.416(4.527) and 4.575 GeV, and upper limits at the 90% confidence level on the cross sections are determined. 展开更多
关键词 cross section P-WAVE D_s MESONS RESONANCE parameters spin-parity BESIII
原文传递
Evidence for the decays of ∧_c^+→∑^+η and ∑^+η’
11
作者 M.Ablikim F.F.An +322 位作者 Q.An Y.Bai Y.Ban H.Cai X.Cai G.F.Cao J.F.Chang G.Chen H.S.Chen J.C.Chen M.L.Chen P.L.Chen S.J.Chen Y.B.Chen W.Cheng H.LDai J.P.Dai Z.Y.Deng Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du P.F.Duan J.Z.Fan J.Fang S.S.Fang Y.Fang C.Q.Feng C.D.Fu Y.Fu Q.Gao X.L.Gao Y.Gao Y.G.Gao Z.Gao L.Gong W.X.Gong L.M.Gu M.H.Gu Y.T.Gu A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo S.Han X.Q.Hao K.L.He Y.K.Heng Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang Q.Ji Q.P.Ji X.B.Ji X.L.Ji X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin X.S.Kang B.C.Ke C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li Lei Li P.L.Li P.R.Li Q.Y.Li T.Li W.D.Li W.G.Li X.L.Li X.N. Li X.Q.Li Z.B.Li H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao C.X.Lin D.X.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.L.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu Q.Liu S.B.Liu X.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma Y.J.Mao Z.P.Mao Z.X.Meng J.Min T.J.Min X.H.Mo Y.J.Mo Z.Ning S.L.Niu S.L.Olsen Q.Ouyang Y.Pan H.P.Peng J.L.Ping R.G.Ping H.R.Qi M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin Z.H.Qin J.F.Qiu S.Q.Qu G.Rong W.Shan X.Y.Shan M.Shao C.P. Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi J.J.Song X.Y.Song G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T.Tan C.J.Tang G.Y.Tang X.Tang B.Wang B.L.Wang C.W.Wang D.Y.Wang Dan Wang K.Wang L.L.Wang L.S.Wang M.Wang Meng Wang P.Wang P.L.Wang W.P.Wang X.F.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang D.H.Wei S.P.Wen L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia D.Xiao Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie X.A.Xiong Q.L.Xiu G.F.Xu J.J.Xu L.Xu Q.J.Xu Q.N.Xu X.P.Xu F.Yan L.Yan w.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan Y.Yuan Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong L.Zhou q.zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.Zhu S.H.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S. Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2019年第8期15-23,共9页
We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.... We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.We find evidence for the decays ∧c+→∑+η and ∑+η’ with statistical significance of 2.5σ and 3.2σ,respectively.Normalizing to the reference decays ∧c+→∑+π0 and ∑+ω,we obtain the ratios of the branching fractions■and ■to be 0.35±0.16±0.02 and 0.86±0.34±0.04,respectively.The upper limits at the 90% confidence level are set to be■and■.Using BESIII measurements of the branching fractions of the reference decays,we determine B(∧c+→∑+η)=(0.41±0.19±0.05)%(<0.68%)and B(∧c+→∑+η’)=(1.34±0.53 ±0.19)%(<1.9%).Here,the first uncertainties are statistical and the second systematic.The obtained branching fraction of ∧c+→∑+η is consistent with the previous measurement,and the branching fraction of ∧c+→∑+η’ is measured for the first time. 展开更多
关键词 charmed BARYON ∧c^+ DECAYS branching FRACTIONS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部