The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM...The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behav ior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardness diminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel.展开更多
In cooling process of Fe-Cr-Al alloy oxidized at 1 300 ℃, the effect of cooling speed and exposure time on oxide spalled area fraction and successive variety of the spalled region were studied by investigating evolve...In cooling process of Fe-Cr-Al alloy oxidized at 1 300 ℃, the effect of cooling speed and exposure time on oxide spalled area fraction and successive variety of the spalled region were studied by investigating evolvement of the thermally grown oxide using in-situ CCD monitoring technique. The results showed that oxide spallation can be restrained by controlling cooling speed and the critical temperature drop of spallation initiation which is closely related to the oxide thickness or exposure time, and the spallation process of a little region may be described in more detail as two routes: from the oxide/substrate interface micro-decohesion, micro-buckles, buckle spreading, buckle crack to spallation and from the interface micro-decohesion, micro-buckles, buckle crack and spallation to the residual oxide decohesion and spallation.展开更多
基金Item Sponsored by Scientific Research Foundation for Returned Overseas Chinese Scholars ,State Education Ministry(2004176)
文摘The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behav ior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardness diminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel.
基金Item Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘In cooling process of Fe-Cr-Al alloy oxidized at 1 300 ℃, the effect of cooling speed and exposure time on oxide spalled area fraction and successive variety of the spalled region were studied by investigating evolvement of the thermally grown oxide using in-situ CCD monitoring technique. The results showed that oxide spallation can be restrained by controlling cooling speed and the critical temperature drop of spallation initiation which is closely related to the oxide thickness or exposure time, and the spallation process of a little region may be described in more detail as two routes: from the oxide/substrate interface micro-decohesion, micro-buckles, buckle spreading, buckle crack to spallation and from the interface micro-decohesion, micro-buckles, buckle crack and spallation to the residual oxide decohesion and spallation.