期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
面向机械臂操作的视觉信息实时重建方法 被引量:1
1
作者 贾清玉 常亮 +4 位作者 杨先一 强保华 张世豪 谢武 杨明浩 《计算机应用》 CSCD 北大核心 2023年第4期1255-1260,共6页
现阶段的机械臂技能传授方法主要通过三维实时重建技术搭建虚拟空间进行模拟训练。然而人与机械臂视角不同,传统视觉信息重建方法由于重建误差大、时间长,而且实验环境苛刻、所需传感器较多等原因,导致机械臂在虚拟空间内习得的技能不... 现阶段的机械臂技能传授方法主要通过三维实时重建技术搭建虚拟空间进行模拟训练。然而人与机械臂视角不同,传统视觉信息重建方法由于重建误差大、时间长,而且实验环境苛刻、所需传感器较多等原因,导致机械臂在虚拟空间内习得的技能不能很好地迁移于现实环境。针对以上问题,提出了一种面向机械臂操作的视觉信息实时重建方法。首先,通过Mask-RCNN(Mask-Region Convolutional Neural Network)对实时采集到的RGB图像提取信息;然后,将提取后的RGB图像及其他视觉信息联合编码,并通过ResNet-18将视觉信息映射为机械臂操作空间的三维位置信息;最后,为减小重建误差,提出了一种聚类簇中心距离受限离群值调整方法(CC-DIS),并利用OpenGL(Open Graphics Library)将调整后的位置信息可视化,完成机械臂操作空间三维实时重建。实验结果表明,所提的实时重建方法具有较快的重建速度和较高的重建精度,完成一次三维重建仅需62.92 ms,重建速度高达每秒16帧,重建相对误差约为5.23%,能有效用于机械臂技能传授任务。 展开更多
关键词 技能传授 Mask-RCNN ResNet-18 三维实时重建 机械臂
下载PDF
基于改进CPMs和SqueezeNet的轻量级人体骨骼关键点检测模型 被引量:3
2
作者 强保华 翟艺杰 +4 位作者 陈金龙 谢武 郑虹 王学文 张世豪 《计算机应用》 CSCD 北大核心 2020年第6期1806-1811,共6页
针对目前的人体骨骼关键点检测模型参数多、训练时间长和检测速度慢的问题,提出了一种将人体骨骼关键点检测模型CPMs与小型卷积神经网络模型SqueezeNet相结合的检测方法。首先,采用4个Stage的CPMs(CPMsStage4)对人物图像进行关键点检测... 针对目前的人体骨骼关键点检测模型参数多、训练时间长和检测速度慢的问题,提出了一种将人体骨骼关键点检测模型CPMs与小型卷积神经网络模型SqueezeNet相结合的检测方法。首先,采用4个Stage的CPMs(CPMsStage4)对人物图像进行关键点检测;然后,在CPMs-Stage4中引入SqueezeNet的Fire Module网络结构,利用Fire Module结构大大压缩模型参数,得到一种新的轻量级人体骨骼关键点检测模型SqueezeNet15-CPMs-Stage4。在扩展的LSP数据集上的验证结果显示,与CPMs相比,SqueezeNet15-CPMs-Stage4模型在训练时间上减少86.68%,在单张图像检测时间上减少44.27%,准确率达到90.4%;与改进的VGG-16、DeepCut和DeeperCut三种参照模型相比,SqueezeNet15-CPMs-Stage4模型在训练时间、检测速度和准确率方面均是最优的。实验结果表明,所提模型不仅检测准确率高,而且训练时间短、检测速度快,能够有效降低人体骨骼关键点检测模型的训练成本。 展开更多
关键词 人体骨骼关键点检测 人体姿态估计 深度学习 卷积神经网络 轻量级 CPMS SqueezeNet
下载PDF
基于可嵌入式网络结构的图像超分辨率重建方法 被引量:2
3
作者 强保华 庞远超 +4 位作者 杨明浩 曾坤 郑虹 谢武 莫烨 《计算机工程》 CAS CSCD 北大核心 2021年第5期221-228,共8页
针对卷积神经网络中的图像超分辨率重建模型训练不稳定与收敛速度较慢等问题,提出一种可嵌入式并行网络框架(EPNF),用于单幅图像超分辨率重建任务。将现有的图像超分辨率网络模型作为EPNF框架的深层结构部分嵌入到该框架中,能够以较小... 针对卷积神经网络中的图像超分辨率重建模型训练不稳定与收敛速度较慢等问题,提出一种可嵌入式并行网络框架(EPNF),用于单幅图像超分辨率重建任务。将现有的图像超分辨率网络模型作为EPNF框架的深层结构部分嵌入到该框架中,能够以较小参数代价加快所嵌入的超分辨率模型的收敛速度,在一定程度上提高模型的准确率。在EPNF网络结构的基础上,提出一种新的超分辨率重建方法EPNF_DCSR,采用稠密跳跃连接构造高分辨率(HR)图像的高频成分,并使用单层卷积构造HR图像的低频成分,合成一幅HR输出图像。实验结果表明,与当前主流的图像超分辨率算法相比,EPNF_DCSR具有更好的图像生成效果。 展开更多
关键词 卷积神经网络 上采样 并行网络 跳跃连接 图像超分辨率
下载PDF
基于级联卷积神经网络的手势特征提取方法 被引量:2
4
作者 陈金龙 瞿元昊 +3 位作者 杨明浩 强保华 唐仁俊 朱庆杰 《计算机应用》 CSCD 北大核心 2020年第S01期74-79,共6页
针对当前手势图像数据集不能均匀、全面地覆盖所有手势参数空间内的各种手势的问题,提出一种基于级联卷积神经网络的手势特征提取方法。该方法通过级联式模型,分层次地对高维度、高自由度的手势参数进行特征感知和提取。首先,将手腕角... 针对当前手势图像数据集不能均匀、全面地覆盖所有手势参数空间内的各种手势的问题,提出一种基于级联卷积神经网络的手势特征提取方法。该方法通过级联式模型,分层次地对高维度、高自由度的手势参数进行特征感知和提取。首先,将手腕角度参数作为手势参数的全局参数,进行划分和特征提取;然后,将手指角度参数作为局部参数,进行特征提取。为解决局部参数特征提取网络数量过多的问题,减少神经网络的数量和节约训练网络所需的时间与内存开销,采用多分支结构的神经网络模型,将五个手指的局部特征提取网络集成为一个整体。实验结果表明,所提方法在真实训练集上平均分类准确率达到95.13%,测试集平均准确率达到54%,测试集准确率相较于全卷积神经网络的算法提高了4.76个百分点。 展开更多
关键词 手势主方向 特征提取 多分支结构 级联卷积神经网络 手势数据集
下载PDF
基于改进的BSMOTE和时序特征的风机故障采样算法 被引量:4
5
作者 杨鲜 赵计生 +4 位作者 强保华 米路中 彭博 唐成华 李宝莲 《计算机应用》 CSCD 北大核心 2021年第6期1673-1678,共6页
针对风机数据集的不平衡问题,提出了一种BSMOTE-Sequence采样算法,在合成新样本时综合考虑空间和时间特征,并对新样本进行清洗,从而有效减少噪声点的生成。首先,根据每个少数类样本的近邻样本的类别比例,将少数类样本划分为安全类样本... 针对风机数据集的不平衡问题,提出了一种BSMOTE-Sequence采样算法,在合成新样本时综合考虑空间和时间特征,并对新样本进行清洗,从而有效减少噪声点的生成。首先,根据每个少数类样本的近邻样本的类别比例,将少数类样本划分为安全类样本、边界类样本和噪声类样本。然后,对每个边界类样本都遴选出空间距离、时间跨度最接近的少数类样本集,利用线性插值法合成新样本,并过滤掉噪声类样本以及类间重叠样本。最后,以支持向量机(SVM)、卷积神经网络(CNN)、长短期记忆(LSTM)人工神经网络作为风机齿轮箱故障检测模型,F1-Score、曲线下面积(AUC)和G-mean作为模型性能评价指标,在真实风机数据集上把所提算法与常用的多种采样算法进行对比,实验结果表明:相比已有算法,BSMOTE-Sequence算法所生成样本的分类效果更好,使得检测模型的F1-Score、AUC和G-mean平均提高了3%,该算法能有效地适用于数据具有时序规律且不平衡的风机故障检测领域。 展开更多
关键词 风机故障检测 不均衡数据 时序特征 采样算法 类间重叠样本
下载PDF
基于文化遗传算法的QoS感知的服务组合 被引量:2
6
作者 柳正利 李兵 +1 位作者 强保华 王静 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第11期2731-2737,共7页
为了提高服务组合的效率,提出1种改进的基于文化遗传算法的QoS感知的服务组合方法。首先构建社会种群和信仰双层空间,然后利用接收函数从社会种群中提取种群进化学习到的知识并更新信仰空间,进而利用信仰空间来引导社会种群进化,加快算... 为了提高服务组合的效率,提出1种改进的基于文化遗传算法的QoS感知的服务组合方法。首先构建社会种群和信仰双层空间,然后利用接收函数从社会种群中提取种群进化学习到的知识并更新信仰空间,进而利用信仰空间来引导社会种群进化,加快算法的收敛性,提高组合效率。研究结果表明:与传统的文化遗传算法和经典的遗传算法相比,本文提出的算法收敛所需的迭代次数明显降低,执行效率和收敛速度均有所提高。 展开更多
关键词 服务组合 QOS感知 文化遗传算法 服务选择
下载PDF
基于矩阵填充与改进PSO算法的多标准协同过滤 被引量:1
7
作者 叶莉 吴春明 +1 位作者 强保华 谢武 《计算机工程》 CAS CSCD 北大核心 2019年第12期176-181,200,共7页
在多标准协同过滤中,存在稀疏性处理方法单一以及传统粒子群优化(PSO)算法早熟、易陷入局部最优等问题。为此,基于矩阵填充及改进PSO算法,提出一种多标准协同过滤模型。采用矩阵填充方法对稀疏数据的缺失部分进行估算,以避免降维方法对... 在多标准协同过滤中,存在稀疏性处理方法单一以及传统粒子群优化(PSO)算法早熟、易陷入局部最优等问题。为此,基于矩阵填充及改进PSO算法,提出一种多标准协同过滤模型。采用矩阵填充方法对稀疏数据的缺失部分进行估算,以避免降维方法对原始数据信息造成损失,同时结合高斯算子快速收敛的优势以及遗传算子对生物进化模拟的有效性对PSO算法进行改进,聚合多标准评分生成TopN推荐列表。实验结果表明,与基于标准PSO算法以及基于遗传算子改进PSO算法的模型相比,该模型的评分预测准确度较优,能为个性化推荐提供有效的支持。 展开更多
关键词 多标准协同过滤 矩阵填充 改进粒子群优化算法 高斯算子 遗传算子
下载PDF
Semantic Description and Verification of Security Policy Based on Ontology 被引量:1
8
作者 TANG Chenghua WANG Lina +2 位作者 TANG Shensheng qiang baohua TIAN Jilong 《Wuhan University Journal of Natural Sciences》 CAS 2014年第5期385-392,共8页
To solve the shortage problem of the semantic descrip- tion scope and verification capability existed in the security policy, a semantic description method for the security policy based on ontology is presented. By de... To solve the shortage problem of the semantic descrip- tion scope and verification capability existed in the security policy, a semantic description method for the security policy based on ontology is presented. By defining the basic elements of the security policy, the relationship model between the ontology and the concept of security policy based on the Web ontology language (OWL) is established, so as to construct the semantic description framework of the security policy. Through modeling and reasoning in the Protege, the ontology model of authorization policy is proposed, and the first-order predicate description logic is introduced to the analysis and verification of the model. Results show that the ontology-based semantic description of security policy has better flexibility and practicality. 展开更多
关键词 security policy ONTOLOGY semantic description ofpolicy the first-order predicate description logic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部