Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte...Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.展开更多
为了研究激光功率P、送粉速率f和扫描速度vf对熔覆层宏观质量的影响,采用正交试验进行激光熔化沉积的单层单道成形试验研究.以熔覆层的形状系数ξ为评价指标,通过极差分析获得P,f和vf对几何形貌影响的主次顺序.结果表明:在一定工艺参数...为了研究激光功率P、送粉速率f和扫描速度vf对熔覆层宏观质量的影响,采用正交试验进行激光熔化沉积的单层单道成形试验研究.以熔覆层的形状系数ξ为评价指标,通过极差分析获得P,f和vf对几何形貌影响的主次顺序.结果表明:在一定工艺参数范围内,f对熔覆层ξ的影响最大;最佳工艺参数组合是P,f和vf分别为1 k W,0.7 g/min和600 mm/min.利用X射线衍射法对增/减材复合制造316L不锈钢薄壁圆环表面残余应力的分布进行了试验研究.结果表明:试样表面的顶部和底部是拉应力,中间部分是压应力;铣削加工可以消除一部分残余应力.展开更多
为考察单向碳纤维增强陶瓷基复合材料(C f/SiC)的磨削表面质量,使用树脂结合剂金刚石砂轮完成正交试验研究.通过极差分析获得砂轮线速度 v s、磨削深度 a p和进给速度 v w对表面质量影响的主次顺序.正交试验结果表明:磨削深度对磨削表...为考察单向碳纤维增强陶瓷基复合材料(C f/SiC)的磨削表面质量,使用树脂结合剂金刚石砂轮完成正交试验研究.通过极差分析获得砂轮线速度 v s、磨削深度 a p和进给速度 v w对表面质量影响的主次顺序.正交试验结果表明:磨削深度对磨削表面粗糙度影响最大;随着磨削深度 a p的增大,表面粗糙度显著增大;随着砂轮线速度 v s的增大,表面粗糙度不断减小;随着进给速度 v w的增大,表面粗糙度增大.最终根据试验结果及表面微观形貌对单向碳纤维增强陶瓷基复合材料的磨削机理进行深入的分析,对单向C f/SiC磨削加工理论的机理揭示具有指导意义.展开更多
Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydropho...Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.展开更多
文摘Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.
文摘为了研究激光功率P、送粉速率f和扫描速度vf对熔覆层宏观质量的影响,采用正交试验进行激光熔化沉积的单层单道成形试验研究.以熔覆层的形状系数ξ为评价指标,通过极差分析获得P,f和vf对几何形貌影响的主次顺序.结果表明:在一定工艺参数范围内,f对熔覆层ξ的影响最大;最佳工艺参数组合是P,f和vf分别为1 k W,0.7 g/min和600 mm/min.利用X射线衍射法对增/减材复合制造316L不锈钢薄壁圆环表面残余应力的分布进行了试验研究.结果表明:试样表面的顶部和底部是拉应力,中间部分是压应力;铣削加工可以消除一部分残余应力.
文摘为考察单向碳纤维增强陶瓷基复合材料(C f/SiC)的磨削表面质量,使用树脂结合剂金刚石砂轮完成正交试验研究.通过极差分析获得砂轮线速度 v s、磨削深度 a p和进给速度 v w对表面质量影响的主次顺序.正交试验结果表明:磨削深度对磨削表面粗糙度影响最大;随着磨削深度 a p的增大,表面粗糙度显著增大;随着砂轮线速度 v s的增大,表面粗糙度不断减小;随着进给速度 v w的增大,表面粗糙度增大.最终根据试验结果及表面微观形貌对单向碳纤维增强陶瓷基复合材料的磨削机理进行深入的分析,对单向C f/SiC磨削加工理论的机理揭示具有指导意义.
基金Project(52075302)supported by the National Natural Science Foundation of ChinaProject(ZR2021QE247)supported by the Shandong Provincial Natural Science Foundation,China+2 种基金Projects(ZR2018ZB0521,ZR2018ZA0401)supported by the Major Basic Research of Shandong Provincial Natural Science Foundation,ChinaProject(Kfkt2020-09)supported by the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(52075302)supported by the Key Laboratory of High-efficiency and Clean Mechanical Manufacture(Shandong University),Ministry of Education,China。
文摘Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.