BACKGROUND According to the theory of traditional Chinese medicine(TCM),the spleen and stomach are the basis of acquired nature and the source of qi and blood biochemistry.After surgery and chemotherapy,patients with ...BACKGROUND According to the theory of traditional Chinese medicine(TCM),the spleen and stomach are the basis of acquired nature and the source of qi and blood biochemistry.After surgery and chemotherapy,patients with colorectal cancer often develop spleen and stomach qi deficiency syndrome,leading to decreased immune function.Buzhong Yiqi decoction,a classic TCM prescription,has the effect of tonifying middle-jiao and invigorating qi,boosting Yang,and suppressing immune-related inflammation.Moreover,it is widely used in the treatment of spleen and stomach qi deficiency syndrome.AIM To investigate the effect of Buzhong Yiqi decoction on spleen and stomach qi deficiency in patients with colorectal cancer.METHODS One hundred patients with colorectal cancer who underwent preoperative chemotherapy and laparoscopy at The First TCM Hospital of Changde from January 2022 to October 2023 were retrospectively analyzed.The patients were divided equally into control and observation groups.Both groups underwent conventional rehabilitation surgery,and the observation group was supplemented with Buzhong Yiqi decoction.SPSS 26.0 was used for statistical analyses.Theχ2 test was used for univariate analysis;independent sample t-tests were used in all cases.RESULTS No significant differences were observed preoperatively in the general characteristics of the two groups.Fourteen days post-surgery,the abdominal distension,emaciation,loose stool,loss of appetite,and vomiting scores were significantly lower in the observation group than in the control group(P<0.05).Immune function and interleukin(IL)-10 levels in the observation group were significantly higher than those of the control group,whereas IL-6,tumor necrosis factor-α,and C-reactive protein levels,tumor biological indexes,and adverse reactions in the observation group were significantly lower than those of the control group(P<0.05).One month after surgery,the patients’quality of life in the observation group was significantly higher than that of the patients in the control group(P<0.05).CONCLUSION Buzhong Yiqi decoction can regulate inflammatory responses and metabolic processes by enhancing immune function,thereby promoting overall immune nutrition and restoring the body’s balance.展开更多
Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.H...Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.展开更多
二氧化碳(CO_(2))虽然被视为破坏生态环境的温室气体,但也是储量最丰富的碳资源,对其进行转化和利用将对社会环境和能源结构产生深远影响.电化学还原CO_(2)(CO_(2)RR)不仅转化效率高,而且成本较低,有望实现规模化生产.在众多催化剂中,...二氧化碳(CO_(2))虽然被视为破坏生态环境的温室气体,但也是储量最丰富的碳资源,对其进行转化和利用将对社会环境和能源结构产生深远影响.电化学还原CO_(2)(CO_(2)RR)不仅转化效率高,而且成本较低,有望实现规模化生产.在众多催化剂中,廉价易得的铜基催化剂被认为是电化学催化还原CO_(2)生成高附加值产物的理想催化剂之一,其中铜氧化物的存在是CO_(2)RR生成高附加值产物的关键.然而,CO_(2)RR过程是在负电位下进行的,当施加电位低于‒0.1 VRHE时,铜氧化物很容易被还原为金属态铜.因此,催化剂稳定氧化态铜的能力在保持连续、高效和稳定的CO_(2)RR产多碳产物性能中至关重要.本文将简单的O_(2)等离子体处理技术与静电纺丝技术相结合,合成了多孔碳纳米纤维负载的Cu/Cu_(x)O异质结催化剂,并考察了其催化CO_(2)RR的性能.在静电纺丝过程中,Cu-ZIF-8前驱体的加入使得热处理后的原丝纤维中形成了丰富的网络贯穿多孔结构,该结构有效地实现了铜纳米颗粒的均匀分散;随后,通过O_(2)等离子体处理技术,在碳纳米纤维中构建了大量的开放介孔,为CO_(2)的吸附和反应提供了有利环境,并使Cu/Cu_(x)O异质结位点暴露于反应界面.电化学性能测试结果表明,在400 mA cm^(‒2)电流密度下,独特的Cu/Cu_(x)O异质结活性位点电催化还原CO_(2)生成乙醇的法拉第效率可达70.7%,该性能优于未经O_(2)等离子体处理的多孔铜纳米纤维.此外,高暴露的Cu/Cu_(x)O异质结活性位点显著地增加实际参与反应的活性位点数量,经计算Cu/Cu_(x)O异质结CO_(2)RR产乙醇的质量活性高达8.4 A mg^(‒1),是目前报道生产乙醇的较高质量活性.多孔碳纳米纤维衬底不仅具有协同电子输运能力,而且在CO_(2)RR测试中施加的负电压有助于维持Cu/Cu_(x)O异质结构的稳定性,使其在高电流密度下能够保持长时间的催化稳定性.此外,本文利用原位拉曼光谱和红外光谱、有限元模拟及密度泛函理论计算等方法深入研究了Cu/Cu_(x)O异质结的催化机理.原位拉曼光谱和红外光谱表征结果证实了在CO_(2)RR过程中Cu_(x)O的动态稳定状态以及关键信号*CO和C‒C键的存在;理论计算表明,Cu/Cu_(x)O异质结的存在促进了关键中间体*CO的溢流,降低了C‒C耦合过程的反应能垒,从而提高了还原产物乙醇的产率.综上,本文成功地在多孔铜纳米纤维中引入氧化物物种,并优化了纤维孔结构.其表现出了较好的电催化还原CO_(2)性能,可高选择性生成乙醇,其独特的多孔碳纤维结构充分暴露了活性位点,实现了较高的质量活性.本文所采用的催化剂组分和微观结构的调控策略为提升电催化中催化剂稳定性和催化活性提供了有益的借鉴.展开更多
Dear Editor,This letter addresses the challenge of forecasting the motion of real-world vessels over an extended period with a limited amount of available data.By employing stochastic differential equation(SDE)modelin...Dear Editor,This letter addresses the challenge of forecasting the motion of real-world vessels over an extended period with a limited amount of available data.By employing stochastic differential equation(SDE)modeling,we integrate both deterministic and stochastic components of the available information.Subsequently,we establish a recursive prediction methodology based on Bayes’rule to update the model state when new measurements are received.Furthermore,we develop a stochastic model tailored specifically to vessel dynamics and introduce an approximation method to tackle computational complexities.Finally,we present an application example and conduct a comparative experiment to validate the effectiveness and superiority of the proposed method.展开更多
Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materia...Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.展开更多
近年来,工业化的高速推进和化石燃料的大量消耗,不仅造成严重的温室效应,而且加剧了能源危机和环境恶化等问题.电催化CO_(2)还原技术可将温室气体CO_(2)转化为具有经济价值的小分子化合物,且可以耦合间歇性可再生能源(如太阳能、风能、...近年来,工业化的高速推进和化石燃料的大量消耗,不仅造成严重的温室效应,而且加剧了能源危机和环境恶化等问题.电催化CO_(2)还原技术可将温室气体CO_(2)转化为具有经济价值的小分子化合物,且可以耦合间歇性可再生能源(如太阳能、风能、潮汐能等)产生的电力,目前已成为实现碳中和目标最有前景的技术途径之一.然而,由于CO_(2)分子化学惰性较强,需要较高的过电位才能将其活化,导致其转化效率低.铋作为一种无毒无害、价格低廉且具有较高析氢过电位的非贵金属材料,可有效地促进CO_(2)电还原为甲酸.但受质量活性、稳定性和产率的限制,铋基催化剂目前仍难以实现工业化应用.本文采用静电纺丝技术结合热处理方法制备了碳层封装的超小铋纳米颗粒,并用于二氧化碳电还原制甲酸.透射电镜等表征结果表明,铋纳米颗粒均匀地分散于碳纳米纤维中.电化学测试结果表明,在900℃下煅烧2 h制得的Bi/CNFs-900催化剂具有较好的电还原CO_(2)为甲酸的性能.在较宽的电化学窗口内,甲酸的法拉第效率均在90%以上,在-1.20 V vs.RHE的电位下实现了-232.2 mA cm^(-2)的电流密度.该催化剂表现出较高的质量活性(-1.6 A mg-_(Bi)^(-1))和较高的甲酸产率(29.8 mol h^(-1)cm^(-2)g^(-1)),分别是纯铋颗粒质量活性(-0.23 A mg-_(Bi)^(-1))的7.05倍,甲酸产率(4.2 mol h^(-1)cm^(-2)g^(-1))的7.07倍.密度泛函理论计算与原位拉曼光谱结果表明,Bi/CNFs-900能够有效地降低关键中间体*OCHO的吉布斯自由能垒.Bi/CNFs-900具有较好的催化活性和选择性的主要原因为:(1)热解过程中碳纤维对铋纳米颗粒的迁移起到一定限制作用,使得更多的活性位点得以暴露,同时大大降低了金属的实际负载量;(2)铋与周围的碳层存在静电相互作用,可以有效地降低界面电荷的转移电阻,促进电子的快速转移;(3)碳纤维的限域作用也有效地抑制了催化反应过程中Bi纳米颗粒的聚集,使Bi/CNFs-900具有良好的稳定性.综上,本文制得了碳纳米纤维包覆铋纳米颗粒,制备方法简单,经济可行,为设计高性能铋基催化剂并实现二氧化碳电还原制甲酸的应用提供借鉴.展开更多
The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon m...The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.展开更多
An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on vi...An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on viral replication and infection, the amino acid residue isoleucine(I) was changed to arginine(R) in the infectious cDNA clone of the rabbit-attenuated ZB strain by sitedirected mutagenesis, and the R127-mutated virus was rescued. BHK monolayer cells and suckling mice were inoculated with the R127-mutated virus to test its growth property and pathogenicity, respectively. The effects of the R127 mutation on viral replication and virulence were analyzed. The data showed that there was a slight difference in plaque morphology between the R127-mutated and wild-type viruses. The growth rate of the mutated virus was lower in BHK-21 cells and its virulence in suckling mice was also attenuated. This study indicates that the R127 mutation in 3A may play an important role in FMDV replication in vitro and in pathogenicity in suckling mice.展开更多
BACKGROUND Myopia and high myopia are global public health concerns.Patients with high myopia account for 0.5%-5.0%of the global population.AIM To examine diopters,axial length(AL),higher-order aberrations,and other o...BACKGROUND Myopia and high myopia are global public health concerns.Patients with high myopia account for 0.5%-5.0%of the global population.AIM To examine diopters,axial length(AL),higher-order aberrations,and other ocular parameters in Chinese children with myopia,to analyze the influence of structural parameters associated with myopia on visual quality,and to provide a theoretical basis for the prevention and treatment of childhood myopia and high myopia.METHODS This study included 195 children aged 6–17 years with myopia.The AL was measured with an ultrasonic ophthalmic diagnostic instrument,and the aberrations,corneal curvature(minimum K1,maximum K2,and average Km),central corneal thickness,anterior chamber depth,and anterior chamber angle were measured using a Sirius three-dimensional anterior segment analyzer.Using a standard formula,the corneal radius of curvature R(337.3/Km)and AL/R values were obtained.RESULTS The diopter of high myopia compared with low-middle myopia was correlated with age and AL(r=-0.336,-0.405,P<0.001),and AL of high myopia was negatively correlated with K1,K2,and Km(r=-0.673,-0.661,and-0.680,respectively;P<0.001),and positively correlated with age and the anterior chamber depth(r=0.214 and 0.275,respectively;P<0.05).AL/R was more closely related to diopter than AL in children with myopia,and 94.4%of children with myopia had an AL/R of>3.00.CONCLUSION The ocular structural parameters of children change because of different diopters.AL/R is more specific and sensitive than AL in evaluating the refractive status of myopia in children.An AL/R of>3.00 may be used as a specific index of myopia in children.There are differences in AL/R between high myopia and low-middle myopia,which can be used for the classification of ametropia.The degree of myopia has a certain influence on higher-order aberrations.展开更多
文摘BACKGROUND According to the theory of traditional Chinese medicine(TCM),the spleen and stomach are the basis of acquired nature and the source of qi and blood biochemistry.After surgery and chemotherapy,patients with colorectal cancer often develop spleen and stomach qi deficiency syndrome,leading to decreased immune function.Buzhong Yiqi decoction,a classic TCM prescription,has the effect of tonifying middle-jiao and invigorating qi,boosting Yang,and suppressing immune-related inflammation.Moreover,it is widely used in the treatment of spleen and stomach qi deficiency syndrome.AIM To investigate the effect of Buzhong Yiqi decoction on spleen and stomach qi deficiency in patients with colorectal cancer.METHODS One hundred patients with colorectal cancer who underwent preoperative chemotherapy and laparoscopy at The First TCM Hospital of Changde from January 2022 to October 2023 were retrospectively analyzed.The patients were divided equally into control and observation groups.Both groups underwent conventional rehabilitation surgery,and the observation group was supplemented with Buzhong Yiqi decoction.SPSS 26.0 was used for statistical analyses.Theχ2 test was used for univariate analysis;independent sample t-tests were used in all cases.RESULTS No significant differences were observed preoperatively in the general characteristics of the two groups.Fourteen days post-surgery,the abdominal distension,emaciation,loose stool,loss of appetite,and vomiting scores were significantly lower in the observation group than in the control group(P<0.05).Immune function and interleukin(IL)-10 levels in the observation group were significantly higher than those of the control group,whereas IL-6,tumor necrosis factor-α,and C-reactive protein levels,tumor biological indexes,and adverse reactions in the observation group were significantly lower than those of the control group(P<0.05).One month after surgery,the patients’quality of life in the observation group was significantly higher than that of the patients in the control group(P<0.05).CONCLUSION Buzhong Yiqi decoction can regulate inflammatory responses and metabolic processes by enhancing immune function,thereby promoting overall immune nutrition and restoring the body’s balance.
基金supported by the National Natural Science Foundation of China(22379100,U21A20312)the Shenzhen Science and Technology Program(Grant No.20231121200418001)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120084)the Key Project of Department of Education of Guangdong Province(2023ZDZX3020)。
文摘Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
文摘二氧化碳(CO_(2))虽然被视为破坏生态环境的温室气体,但也是储量最丰富的碳资源,对其进行转化和利用将对社会环境和能源结构产生深远影响.电化学还原CO_(2)(CO_(2)RR)不仅转化效率高,而且成本较低,有望实现规模化生产.在众多催化剂中,廉价易得的铜基催化剂被认为是电化学催化还原CO_(2)生成高附加值产物的理想催化剂之一,其中铜氧化物的存在是CO_(2)RR生成高附加值产物的关键.然而,CO_(2)RR过程是在负电位下进行的,当施加电位低于‒0.1 VRHE时,铜氧化物很容易被还原为金属态铜.因此,催化剂稳定氧化态铜的能力在保持连续、高效和稳定的CO_(2)RR产多碳产物性能中至关重要.本文将简单的O_(2)等离子体处理技术与静电纺丝技术相结合,合成了多孔碳纳米纤维负载的Cu/Cu_(x)O异质结催化剂,并考察了其催化CO_(2)RR的性能.在静电纺丝过程中,Cu-ZIF-8前驱体的加入使得热处理后的原丝纤维中形成了丰富的网络贯穿多孔结构,该结构有效地实现了铜纳米颗粒的均匀分散;随后,通过O_(2)等离子体处理技术,在碳纳米纤维中构建了大量的开放介孔,为CO_(2)的吸附和反应提供了有利环境,并使Cu/Cu_(x)O异质结位点暴露于反应界面.电化学性能测试结果表明,在400 mA cm^(‒2)电流密度下,独特的Cu/Cu_(x)O异质结活性位点电催化还原CO_(2)生成乙醇的法拉第效率可达70.7%,该性能优于未经O_(2)等离子体处理的多孔铜纳米纤维.此外,高暴露的Cu/Cu_(x)O异质结活性位点显著地增加实际参与反应的活性位点数量,经计算Cu/Cu_(x)O异质结CO_(2)RR产乙醇的质量活性高达8.4 A mg^(‒1),是目前报道生产乙醇的较高质量活性.多孔碳纳米纤维衬底不仅具有协同电子输运能力,而且在CO_(2)RR测试中施加的负电压有助于维持Cu/Cu_(x)O异质结构的稳定性,使其在高电流密度下能够保持长时间的催化稳定性.此外,本文利用原位拉曼光谱和红外光谱、有限元模拟及密度泛函理论计算等方法深入研究了Cu/Cu_(x)O异质结的催化机理.原位拉曼光谱和红外光谱表征结果证实了在CO_(2)RR过程中Cu_(x)O的动态稳定状态以及关键信号*CO和C‒C键的存在;理论计算表明,Cu/Cu_(x)O异质结的存在促进了关键中间体*CO的溢流,降低了C‒C耦合过程的反应能垒,从而提高了还原产物乙醇的产率.综上,本文成功地在多孔铜纳米纤维中引入氧化物物种,并优化了纤维孔结构.其表现出了较好的电催化还原CO_(2)性能,可高选择性生成乙醇,其独特的多孔碳纤维结构充分暴露了活性位点,实现了较高的质量活性.本文所采用的催化剂组分和微观结构的调控策略为提升电催化中催化剂稳定性和催化活性提供了有益的借鉴.
基金supported by the National Natural Science Foundation of China(62073019)the Key R&D Program of Hebei Province(22340301D)+1 种基金China Postdoctoral Science Foundation(2021M703021)Hebei Postdoctoral Science Foundation(B2021003031)。
文摘Dear Editor,This letter addresses the challenge of forecasting the motion of real-world vessels over an extended period with a limited amount of available data.By employing stochastic differential equation(SDE)modeling,we integrate both deterministic and stochastic components of the available information.Subsequently,we establish a recursive prediction methodology based on Bayes’rule to update the model state when new measurements are received.Furthermore,we develop a stochastic model tailored specifically to vessel dynamics and introduce an approximation method to tackle computational complexities.Finally,we present an application example and conduct a comparative experiment to validate the effectiveness and superiority of the proposed method.
基金supported by the National Natural Science Foundation of China(U21A20312,22172099,21975162,51902209)the Natural Science Foundation of Guangdong(2020A1515010840)the Shenzhen Science and Technology Program(SGDX20201103095802006,RCBS20200714114819161,JCYJ20190808111801674,JCYJ20200109105803806,RCYX20200714114535052)。
文摘Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.
文摘近年来,工业化的高速推进和化石燃料的大量消耗,不仅造成严重的温室效应,而且加剧了能源危机和环境恶化等问题.电催化CO_(2)还原技术可将温室气体CO_(2)转化为具有经济价值的小分子化合物,且可以耦合间歇性可再生能源(如太阳能、风能、潮汐能等)产生的电力,目前已成为实现碳中和目标最有前景的技术途径之一.然而,由于CO_(2)分子化学惰性较强,需要较高的过电位才能将其活化,导致其转化效率低.铋作为一种无毒无害、价格低廉且具有较高析氢过电位的非贵金属材料,可有效地促进CO_(2)电还原为甲酸.但受质量活性、稳定性和产率的限制,铋基催化剂目前仍难以实现工业化应用.本文采用静电纺丝技术结合热处理方法制备了碳层封装的超小铋纳米颗粒,并用于二氧化碳电还原制甲酸.透射电镜等表征结果表明,铋纳米颗粒均匀地分散于碳纳米纤维中.电化学测试结果表明,在900℃下煅烧2 h制得的Bi/CNFs-900催化剂具有较好的电还原CO_(2)为甲酸的性能.在较宽的电化学窗口内,甲酸的法拉第效率均在90%以上,在-1.20 V vs.RHE的电位下实现了-232.2 mA cm^(-2)的电流密度.该催化剂表现出较高的质量活性(-1.6 A mg-_(Bi)^(-1))和较高的甲酸产率(29.8 mol h^(-1)cm^(-2)g^(-1)),分别是纯铋颗粒质量活性(-0.23 A mg-_(Bi)^(-1))的7.05倍,甲酸产率(4.2 mol h^(-1)cm^(-2)g^(-1))的7.07倍.密度泛函理论计算与原位拉曼光谱结果表明,Bi/CNFs-900能够有效地降低关键中间体*OCHO的吉布斯自由能垒.Bi/CNFs-900具有较好的催化活性和选择性的主要原因为:(1)热解过程中碳纤维对铋纳米颗粒的迁移起到一定限制作用,使得更多的活性位点得以暴露,同时大大降低了金属的实际负载量;(2)铋与周围的碳层存在静电相互作用,可以有效地降低界面电荷的转移电阻,促进电子的快速转移;(3)碳纤维的限域作用也有效地抑制了催化反应过程中Bi纳米颗粒的聚集,使Bi/CNFs-900具有良好的稳定性.综上,本文制得了碳纳米纤维包覆铋纳米颗粒,制备方法简单,经济可行,为设计高性能铋基催化剂并实现二氧化碳电还原制甲酸的应用提供借鉴.
文摘The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.
基金jointly supported by grants from National Natural Science Foundation of China(No.31060343)Innovative Talents in Science and Technology Project of Yunnan Province(2011HB035)
文摘An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on viral replication and infection, the amino acid residue isoleucine(I) was changed to arginine(R) in the infectious cDNA clone of the rabbit-attenuated ZB strain by sitedirected mutagenesis, and the R127-mutated virus was rescued. BHK monolayer cells and suckling mice were inoculated with the R127-mutated virus to test its growth property and pathogenicity, respectively. The effects of the R127 mutation on viral replication and virulence were analyzed. The data showed that there was a slight difference in plaque morphology between the R127-mutated and wild-type viruses. The growth rate of the mutated virus was lower in BHK-21 cells and its virulence in suckling mice was also attenuated. This study indicates that the R127 mutation in 3A may play an important role in FMDV replication in vitro and in pathogenicity in suckling mice.
基金Supported by Scientific Research Project of Heilongjiang Health Commission,China,No.2020-141.
文摘BACKGROUND Myopia and high myopia are global public health concerns.Patients with high myopia account for 0.5%-5.0%of the global population.AIM To examine diopters,axial length(AL),higher-order aberrations,and other ocular parameters in Chinese children with myopia,to analyze the influence of structural parameters associated with myopia on visual quality,and to provide a theoretical basis for the prevention and treatment of childhood myopia and high myopia.METHODS This study included 195 children aged 6–17 years with myopia.The AL was measured with an ultrasonic ophthalmic diagnostic instrument,and the aberrations,corneal curvature(minimum K1,maximum K2,and average Km),central corneal thickness,anterior chamber depth,and anterior chamber angle were measured using a Sirius three-dimensional anterior segment analyzer.Using a standard formula,the corneal radius of curvature R(337.3/Km)and AL/R values were obtained.RESULTS The diopter of high myopia compared with low-middle myopia was correlated with age and AL(r=-0.336,-0.405,P<0.001),and AL of high myopia was negatively correlated with K1,K2,and Km(r=-0.673,-0.661,and-0.680,respectively;P<0.001),and positively correlated with age and the anterior chamber depth(r=0.214 and 0.275,respectively;P<0.05).AL/R was more closely related to diopter than AL in children with myopia,and 94.4%of children with myopia had an AL/R of>3.00.CONCLUSION The ocular structural parameters of children change because of different diopters.AL/R is more specific and sensitive than AL in evaluating the refractive status of myopia in children.An AL/R of>3.00 may be used as a specific index of myopia in children.There are differences in AL/R between high myopia and low-middle myopia,which can be used for the classification of ametropia.The degree of myopia has a certain influence on higher-order aberrations.