为揭示长期浸水长焰煤的自燃特性及影响机制,实验研究了长焰煤原始煤样和长期浸水风干煤样的低温氧化特性,分析了长期浸水对煤微观结构、氧化升温过程及活化能等方面的影响规律。研究结果表明:长期被水浸泡煤样的表面孔隙结构更发达,平...为揭示长期浸水长焰煤的自燃特性及影响机制,实验研究了长焰煤原始煤样和长期浸水风干煤样的低温氧化特性,分析了长期浸水对煤微观结构、氧化升温过程及活化能等方面的影响规律。研究结果表明:长期被水浸泡煤样的表面孔隙结构更发达,平均孔径、介孔孔容和微孔孔容都有不同程度的增大;同时,浸水煤样表面的部分有机物和无机物会溶解在水中,煤中自由基浓度增加,基团分布与原煤相比存在明显变化;与原煤样相比,经过90,180 d浸水过程后的煤体,低温氧化过程的气体产生量和产生速率更高,交叉点温度由原煤的160.9℃降低至157,151.5℃,活化能分别降低了3.84,4.18 k J/mol,表现出更高的自燃倾向性。研究结果可为西部浅埋藏近距离煤层群开采上覆采空区长期浸水煤的自燃防治提供借鉴。展开更多
Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation...Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation of lignite, gas coal, fat coal and anthracite. During slow low-temperature heat accumulation, aliphatic hydrocarbons, such as methyl and methylene, are attacked by oxygen atoms absorbed by pores on coal surfaces, generating unstable solid intermediate carbon-oxygen complexes, which then decompose into gaseous products (CO, CO2) and stable solid complexes. At the accelerated oxidation stage, the stable complexes begin to decompose in large amounts and provided new active sites for further oxidation, while the aliphatic structures gained energy and fell from the benzene rings to produce CxHy and H2.展开更多
Oxygen consumption is an important index of coal oxidation.In order to explore the coal-oxygen reaction,we developed an experimental system of coal spontaneous combustion and tested oxygen consumption of differently r...Oxygen consumption is an important index of coal oxidation.In order to explore the coal-oxygen reaction,we developed an experimental system of coal spontaneous combustion and tested oxygen consumption of differently ranked coals at programmed temperatures.The size of coal samples ranged from 0.18~0.42 mm and the system heat-rate was 0.8℃/min.The results show that, for high ranked coals,oxygen consumption rises with coal temperature as a piecewise non-linear process.The critical coal temperature is about 50℃.Below this temperature,oxygen consumption decreases with rising coal temperatures and reached a minimum at 50℃,approximately.Subsequently,it begins to increase and the rate of growth clearly increased with temperature.For low ranked coals,this characteristic is inconspicuous or even non-existent.The difference in oxygen consumption at the same temperatures varies for differently ranked coals.The results show the difference in oxygen consumption of the coals tested in our study reached 78.6%at 100℃.Based on the theory of coal-oxygen reaction,these phenomena were analyzed from the point of view of physical and chemical characteristics,as well as the appearance of the coal-oxygen complex.From theoretical analyses and our experiments,we conclude that the oxygen consumption at programmed temperatures reflects the oxidation ability of coals perfectly.展开更多
A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature(CPT) of different ranks of coal.The tests were carried out using a self-designed experimental system f...A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature(CPT) of different ranks of coal.The tests were carried out using a self-designed experimental system for coal self-heating.50 g(±0.01 g) of coal particles ranging from 0.18 mm to 0.38 mm in size were put into a pure copper reaction vessel attached to the center of a temperature programmed enclosure.The temperature program increased the temperature at a rate of 0.8℃/min.Dry air was permitted to flow into the coal reaction vessel at different rates.The surrounding temperature and the coal temperature were monitored by a temperature logger.The results indicate that CPT is affected by coal rank,moisture,sulfur, and the experimental conditions.Higher ranked coals show higher CPT values.A high moisture content causes a delay phenomenon during the self-heating of the coal.Drying at 40℃decreases the effects of moisture.The reactivity of sulfur components in the coal is low under dry and low-temperature conditions. These components form a film that covers the coal surface and slightly inhibits the self-heating of the coal. The flow rate of dry air,and the heating rate of the surroundings,also affect the self-heating of the coal.The most appropriate experimental conditions for coal samples of a given weight and particle size were determined through contrastive analysis.Based on this analysis we propose that CPTs be determined under the same,or nearly the same conditions,for evaluation of the spontaneous combustion of coal.展开更多
For further understanding of self-heating of coal, we tested the reactions of seven different ranks of coal under inert atmosphere. In the test, 50-gram of coal sample ranged from 0.18 mm to 0.38 mm was put into a spe...For further understanding of self-heating of coal, we tested the reactions of seven different ranks of coal under inert atmosphere. In the test, 50-gram of coal sample ranged from 0.18 mm to 0.38 mm was put into a special designed copper reaction vessel and let pure nitrogen to flow into the coal sample from the bottom at a rate of 100 mL/min. The programmed temperature enclosure was run at a programmed rate of 0.8 ~C/min. The concentration of the carbon oxides and the coal temperature were tested. The results show that the coal reactions under inert atmosphere can generate CO and C02. The reactions under inert atmosphere are affected by coal ranks, initial pore structure of coal and sulfur content. For low ranks of coal, the productions of carbon oxides are piecewise. The coal temperature is lower than the surrounding temperature throughout the reactions under inert atmosphere, but it rises quickly and reaches a crossing point temperature in the later stage under dry-air atmosphere. Based on the analysis, it indicates the self-reaction of initial active groups exists in the self-heating of coal besides the reactions in the two parallel reactions model. Spontaneous combustion of coal is due to both the oxidation heat accumulation and the chain reaction. A new reaction model of self-heating of coal was orooosed.展开更多
文摘为揭示长期浸水长焰煤的自燃特性及影响机制,实验研究了长焰煤原始煤样和长期浸水风干煤样的低温氧化特性,分析了长期浸水对煤微观结构、氧化升温过程及活化能等方面的影响规律。研究结果表明:长期被水浸泡煤样的表面孔隙结构更发达,平均孔径、介孔孔容和微孔孔容都有不同程度的增大;同时,浸水煤样表面的部分有机物和无机物会溶解在水中,煤中自由基浓度增加,基团分布与原煤相比存在明显变化;与原煤样相比,经过90,180 d浸水过程后的煤体,低温氧化过程的气体产生量和产生速率更高,交叉点温度由原煤的160.9℃降低至157,151.5℃,活化能分别降低了3.84,4.18 k J/mol,表现出更高的自燃倾向性。研究结果可为西部浅埋藏近距离煤层群开采上覆采空区长期浸水煤的自燃防治提供借鉴。
基金Financial support for this work provided by the National Natural Science Foundation of China (No.50674088) is deeply appreciated
文摘Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation of lignite, gas coal, fat coal and anthracite. During slow low-temperature heat accumulation, aliphatic hydrocarbons, such as methyl and methylene, are attacked by oxygen atoms absorbed by pores on coal surfaces, generating unstable solid intermediate carbon-oxygen complexes, which then decompose into gaseous products (CO, CO2) and stable solid complexes. At the accelerated oxidation stage, the stable complexes begin to decompose in large amounts and provided new active sites for further oxidation, while the aliphatic structures gained energy and fell from the benzene rings to produce CxHy and H2.
基金Financial support for this research from the National Natural Science Foundation of China(Nos. 50674088 and 50927403)
文摘Oxygen consumption is an important index of coal oxidation.In order to explore the coal-oxygen reaction,we developed an experimental system of coal spontaneous combustion and tested oxygen consumption of differently ranked coals at programmed temperatures.The size of coal samples ranged from 0.18~0.42 mm and the system heat-rate was 0.8℃/min.The results show that, for high ranked coals,oxygen consumption rises with coal temperature as a piecewise non-linear process.The critical coal temperature is about 50℃.Below this temperature,oxygen consumption decreases with rising coal temperatures and reached a minimum at 50℃,approximately.Subsequently,it begins to increase and the rate of growth clearly increased with temperature.For low ranked coals,this characteristic is inconspicuous or even non-existent.The difference in oxygen consumption at the same temperatures varies for differently ranked coals.The results show the difference in oxygen consumption of the coals tested in our study reached 78.6%at 100℃.Based on the theory of coal-oxygen reaction,these phenomena were analyzed from the point of view of physical and chemical characteristics,as well as the appearance of the coal-oxygen complex.From theoretical analyses and our experiments,we conclude that the oxygen consumption at programmed temperatures reflects the oxidation ability of coals perfectly.
基金financial supports provided by the National Natural Science Foundation of China(Nos. 50927403 and 50674088)the Natural Science Foundation of Jiangsu Province(No.BK2009004)the Research Foundation of State Key Laboratory of Coal Resources and Safe Mining(No. SKLCRSM08X06)
文摘A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature(CPT) of different ranks of coal.The tests were carried out using a self-designed experimental system for coal self-heating.50 g(±0.01 g) of coal particles ranging from 0.18 mm to 0.38 mm in size were put into a pure copper reaction vessel attached to the center of a temperature programmed enclosure.The temperature program increased the temperature at a rate of 0.8℃/min.Dry air was permitted to flow into the coal reaction vessel at different rates.The surrounding temperature and the coal temperature were monitored by a temperature logger.The results indicate that CPT is affected by coal rank,moisture,sulfur, and the experimental conditions.Higher ranked coals show higher CPT values.A high moisture content causes a delay phenomenon during the self-heating of the coal.Drying at 40℃decreases the effects of moisture.The reactivity of sulfur components in the coal is low under dry and low-temperature conditions. These components form a film that covers the coal surface and slightly inhibits the self-heating of the coal. The flow rate of dry air,and the heating rate of the surroundings,also affect the self-heating of the coal.The most appropriate experimental conditions for coal samples of a given weight and particle size were determined through contrastive analysis.Based on this analysis we propose that CPTs be determined under the same,or nearly the same conditions,for evaluation of the spontaneous combustion of coal.
基金Financial supports for this research provided by the National Natural Science Foundation of China (No. 50927403)the Fundamental Research Funds for the Central Universities (No.2011RC06)the Jiangsu Natural Science Foundation (No.BK2009004)
文摘For further understanding of self-heating of coal, we tested the reactions of seven different ranks of coal under inert atmosphere. In the test, 50-gram of coal sample ranged from 0.18 mm to 0.38 mm was put into a special designed copper reaction vessel and let pure nitrogen to flow into the coal sample from the bottom at a rate of 100 mL/min. The programmed temperature enclosure was run at a programmed rate of 0.8 ~C/min. The concentration of the carbon oxides and the coal temperature were tested. The results show that the coal reactions under inert atmosphere can generate CO and C02. The reactions under inert atmosphere are affected by coal ranks, initial pore structure of coal and sulfur content. For low ranks of coal, the productions of carbon oxides are piecewise. The coal temperature is lower than the surrounding temperature throughout the reactions under inert atmosphere, but it rises quickly and reaches a crossing point temperature in the later stage under dry-air atmosphere. Based on the analysis, it indicates the self-reaction of initial active groups exists in the self-heating of coal besides the reactions in the two parallel reactions model. Spontaneous combustion of coal is due to both the oxidation heat accumulation and the chain reaction. A new reaction model of self-heating of coal was orooosed.