The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. T...The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.展开更多
In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) s...In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles.展开更多
A Cr-Ni-Mo overlayer was deposited on the surface of compacted graphite iron(CGI)by the plasma transferred arc(PTA)alloying technique.The microstructure of Cr-Ni-Mo overlayer was characterized by optical microscop...A Cr-Ni-Mo overlayer was deposited on the surface of compacted graphite iron(CGI)by the plasma transferred arc(PTA)alloying technique.The microstructure of Cr-Ni-Mo overlayer was characterized by optical microscopy(OM),scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS),and X-ray diffractometer(XRD).Results show that the cross-section consists of four regions:alloying zone(AZ),molten zone(MZ),heat affected zone(HAZ),and the substrate(SUB).The microstructure of AZ mainly consists of cellularγ-(Fe,Ni)solid solution,residual austenite and a network of eutectic Cr7C3 carbide while the MZ area has a typical feature of white cast iron(M3C-type cementite).The martensite/ledeburite double shells are observed in the HAZ.With decreasing the concentration of Cr-Ni-Mo alloys,the fracture mode changes from ductile in the AZ to brittle in the MZ.The maximum hardness of the AZ(450 HV0.2)is lower than that of the MZ(800 HV0.2).The eutectic M3 C and M7C3 carbides increase the microhardness,while the austenite decreases that of the AZ.展开更多
基金financially supported by the Key Project of China National Erzhong Group Co.(No.2012zx04010-081)
文摘The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.
基金financially supported by the National Science and Technology Major Project of China (No. 2012ZX04010-081)the National High-Tech Research and Development Program of China (No. 2013AA040404)
文摘In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles.
文摘A Cr-Ni-Mo overlayer was deposited on the surface of compacted graphite iron(CGI)by the plasma transferred arc(PTA)alloying technique.The microstructure of Cr-Ni-Mo overlayer was characterized by optical microscopy(OM),scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS),and X-ray diffractometer(XRD).Results show that the cross-section consists of four regions:alloying zone(AZ),molten zone(MZ),heat affected zone(HAZ),and the substrate(SUB).The microstructure of AZ mainly consists of cellularγ-(Fe,Ni)solid solution,residual austenite and a network of eutectic Cr7C3 carbide while the MZ area has a typical feature of white cast iron(M3C-type cementite).The martensite/ledeburite double shells are observed in the HAZ.With decreasing the concentration of Cr-Ni-Mo alloys,the fracture mode changes from ductile in the AZ to brittle in the MZ.The maximum hardness of the AZ(450 HV0.2)is lower than that of the MZ(800 HV0.2).The eutectic M3 C and M7C3 carbides increase the microhardness,while the austenite decreases that of the AZ.