Molecular ferroelastics with the natural features of mechanical flexibility and switchable spontaneous strain have attracted widespread attention in the scientific community due to their potential applications in tuna...Molecular ferroelastics with the natural features of mechanical flexibility and switchable spontaneous strain have attracted widespread attention in the scientific community due to their potential applications in tunable gratings,flexible memorizers,strain sensors,and intelligent actuators.However,most designs of molecular ferroelastics remain in the stage of blind exploration,posing a challenge to achieve a functional ferroelastic more effectively.Herein,we have successfully obtained a molecular ferroelastic,[Me_(2)NH(CH_(2))_(2)NH_(3)](ReO_(4))_(2)(Me_(2)NH(CH_(2))_(2)NH_(3)=N,N-dimethylethylenediammonium),under the guidance of the mono-/double-protonation strategy.The_double-protonated[Me_(2)NH(CH_(2))_(2)NH_(3)](ReO_(4))_(2) undergoes a paraelastic-ferroelastic phase transition with the Aizu notation of 2/mFi at 322 K.Meanwhile,the theoretical calculation and experimental measurement simultaneously show that[Me_(2)NH(CH_(2))_(2)NH_(3)](ReO_(4))_(2) possesses good mechanical flexibility,because its elastic modulus(E)of 8.26 GPa and hardness(H)of 0.45 GPa are smaller than the average values of organic crystals(E of 12.05 GPa and H of 0.5 GPa),which makes it promising to apply in wearable pressure sensors,implantable medical sensors,high-precision tuners,etc.This work further enriches the molecular ferroelastic family and demonstrates that mono-/double-protonation is one of the effective molecular modification strategies for designing ferroelastics.展开更多
Since it was first postulated by Wigglesworth in 1934, juvenile hormone (JH) is considered a status quo hormone in insects because it prevents metamorphosis that is initiated by the molting hormone 20-hydroxyecdysone ...Since it was first postulated by Wigglesworth in 1934, juvenile hormone (JH) is considered a status quo hormone in insects because it prevents metamorphosis that is initiated by the molting hormone 20-hydroxyecdysone (20E). During the last decade, significant advances have been made regarding JH signaling. First, the bHLH-PAS transcription factor Met/Gce was identified as the JH intracellular receptor. In the presence of JH, with the assistance of Hsp83, and through physical association with a bHLH?PAS transcriptional co-activator, Met/Gce enters the nucleus and binds to E-box-like motifs in promoter regions of JH primary?response genes for inducing gene expression. Second, the zinc finger transcription factor Kr-hl was identified as the anti-metamorphic factor which transduces JH signaling. Via Kr-hl binding sites, Kr-hl represses expression of 20E primary?response genes (i.e. Bi\ E93 and E5) to prevent 20E-induced metamorphosis. Third, through the intracellular signaling, JH promotes differ ent aspects of female reproduction. Nevertheless, this action varies greatly from species to species. Last, a hypothetical JH membrane receptor has been predicted to be either a GPCR or a tyrosine kinase receptor. In future, it will be a great challenge to understand how the JH intracellular receptor Met/Gce and the yet unidentified JH membrane receptor coordinate to regulate metamorphosis and reproduction in insects.展开更多
基金financially supported by Southeast University and the National Natural Science Foundation of China(Grant Nos.21991141 and 22371258).
文摘Molecular ferroelastics with the natural features of mechanical flexibility and switchable spontaneous strain have attracted widespread attention in the scientific community due to their potential applications in tunable gratings,flexible memorizers,strain sensors,and intelligent actuators.However,most designs of molecular ferroelastics remain in the stage of blind exploration,posing a challenge to achieve a functional ferroelastic more effectively.Herein,we have successfully obtained a molecular ferroelastic,[Me_(2)NH(CH_(2))_(2)NH_(3)](ReO_(4))_(2)(Me_(2)NH(CH_(2))_(2)NH_(3)=N,N-dimethylethylenediammonium),under the guidance of the mono-/double-protonation strategy.The_double-protonated[Me_(2)NH(CH_(2))_(2)NH_(3)](ReO_(4))_(2) undergoes a paraelastic-ferroelastic phase transition with the Aizu notation of 2/mFi at 322 K.Meanwhile,the theoretical calculation and experimental measurement simultaneously show that[Me_(2)NH(CH_(2))_(2)NH_(3)](ReO_(4))_(2) possesses good mechanical flexibility,because its elastic modulus(E)of 8.26 GPa and hardness(H)of 0.45 GPa are smaller than the average values of organic crystals(E of 12.05 GPa and H of 0.5 GPa),which makes it promising to apply in wearable pressure sensors,implantable medical sensors,high-precision tuners,etc.This work further enriches the molecular ferroelastic family and demonstrates that mono-/double-protonation is one of the effective molecular modification strategies for designing ferroelastics.
基金financially supported by Zhejiang Normal Universitythe National Natural Science Foundation of China (21991141)the Natural Science Foundation of Zhejiang Province (LZ20B010001)。
基金support by the National Science Foundation of China(Grants No.31620103917,31330072,and 31572325 to SL,31702053 to KL)the National Science Foundation of Guangdong Province(Grants No.2017A030310270)to KLthe Postdoctoral Foundation of China(Grant No.2017M610534 to KL and 2018M633068 to QJ).
文摘Since it was first postulated by Wigglesworth in 1934, juvenile hormone (JH) is considered a status quo hormone in insects because it prevents metamorphosis that is initiated by the molting hormone 20-hydroxyecdysone (20E). During the last decade, significant advances have been made regarding JH signaling. First, the bHLH-PAS transcription factor Met/Gce was identified as the JH intracellular receptor. In the presence of JH, with the assistance of Hsp83, and through physical association with a bHLH?PAS transcriptional co-activator, Met/Gce enters the nucleus and binds to E-box-like motifs in promoter regions of JH primary?response genes for inducing gene expression. Second, the zinc finger transcription factor Kr-hl was identified as the anti-metamorphic factor which transduces JH signaling. Via Kr-hl binding sites, Kr-hl represses expression of 20E primary?response genes (i.e. Bi\ E93 and E5) to prevent 20E-induced metamorphosis. Third, through the intracellular signaling, JH promotes differ ent aspects of female reproduction. Nevertheless, this action varies greatly from species to species. Last, a hypothetical JH membrane receptor has been predicted to be either a GPCR or a tyrosine kinase receptor. In future, it will be a great challenge to understand how the JH intracellular receptor Met/Gce and the yet unidentified JH membrane receptor coordinate to regulate metamorphosis and reproduction in insects.