期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury
1
作者 Mengshi Yang Miao Bai +10 位作者 Yuan Zhuang Shenghua Lu qianqian ge Hao Li Yu Deng Hongbin Wu Xiaojian Xu Fei Niu Xinlong Dong Bin Zhang Baiyun Liu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2611-2623,共13页
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i... Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway. 展开更多
关键词 apoptosis BV2 microglia DEXAMETHASONE glucocorticoid receptor GLUCOCORTICOIDS innate immune system microglial polarization neuroinflammation primary microglia traumatic brain injury
下载PDF
Effects of acute salinity stress on the survival and prophenoloxidase system of Exopalaemon carinicauda
2
作者 qianqian ge Zhengdao Li +2 位作者 Jitao Li Jiajia Wang Jian Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第4期57-64,共8页
The ridgetail white prawn Exopalaemon carinicauda is a euryhaline shrimp species in the estuarine and coastal areas of China.In this study,survival rates,transcription levels of two prophenoloxidase system-related gen... The ridgetail white prawn Exopalaemon carinicauda is a euryhaline shrimp species in the estuarine and coastal areas of China.In this study,survival rates,transcription levels of two prophenoloxidase system-related genes(Ec LGBP and Ecpro PO)and PO activity were determined quantitatively in juvenile and adult E.carinicauda under different salinity levels.The results showed that E.carinicauda juveniles could survive in a wider range of salinity conditions than adults.For juvenile E.carinicauda,the expression levels of Ec LGBP and Ec Pro PO were upregulated in low salinities and showed no significant difference at 20–40,while PO activities in low salinities were higher compared to those in high salinities.For adult E.carinicauda,the expression profiles of Ec LGBP and Ecpro PO had a different trend of up-regulation in salinity stress treatments and no obvious difference was observed in the gene expression levels and PO activity between 30 and 40.The salinity tolerance range of immunity for juvenile and adult E.carinicauda is 20–40 and 30–40,respectively. 展开更多
关键词 Exopalaemon carinicauda prophenoloxidase system salinity stress IMMUNITY tolerant range
下载PDF
Pathological Networks Involving Dysmorphic Neurons in Type ⅡFocal Cortical Dysplasia 被引量:1
3
作者 Yijie Shao qianqian ge +13 位作者 Jiachao Yang Mi Wang Yu Zhou Jin-Xin Guo Mengyue Zhu Jiachen Shi Yiqi Hu Li Shen Zhong Chen Xiao-Ming Li Jun-Ming Zhu Jianmin Zhang Shumin Duan Jiadong Chen 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第9期1007-1024,共18页
Focal cortical dysplasia(FCD)is one of the most common causes of drug-resistant epilepsy.Dysmorphic neurons are the major histopathological feature of typeⅡFCD,but their role in seizure genesis in FCD is unclear.Here... Focal cortical dysplasia(FCD)is one of the most common causes of drug-resistant epilepsy.Dysmorphic neurons are the major histopathological feature of typeⅡFCD,but their role in seizure genesis in FCD is unclear.Here we performed whole-cell patch-clamp recording and morphological reconstruction of cortical principal neurons in postsurgical brain tissue from drug-resistant epilepsy patients.Quantitative analyses revealed distinct morphological and electrophysiological characteristics of the upper layer dysmorphic neurons in typeⅡFCD,including an enlarged soma,aberrant dendritic arbors,increased current injection for rheobase action potential firing,and reduced action potential firing frequency.Intriguingly,the upper layer dysmorphic neurons received decreased glutamatergic and increased GABAergic synaptic inputs that were coupled with upregulation of the Na^(+)-K^(+)-Cl^(−)cotransporter.In addition,we found a depolarizing shift of the GABA reversal potential in the CamKⅡ-cre::PTENflox/flox mouse model of drug-resistant epilepsy,suggesting that enhanced GABAergic inputs might depolarize dysmorphic neurons.Thus,imbalance of synaptic excitation and inhibition of dysmorphic neurons may contribute to seizure genesis in typeⅡFCD. 展开更多
关键词 Focal cortical dysplasia Dysmorphic neuron Whole-cell patch-clamp recording Morphological reconstruction Excitation-inhibition balance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部