During the past 30 years,Brassica napus L.has grown rapidly worldwide,and the emergence of a large number of innovative rape varieties has provided tremendous support for the food,feed,biofuel and ornamental markets.T...During the past 30 years,Brassica napus L.has grown rapidly worldwide,and the emergence of a large number of innovative rape varieties has provided tremendous support for the food,feed,biofuel and ornamental markets.This paper summarized the research on B.napus variety screening,supporting cultivation techniques and breeding and utilization of fine varieties,and discussed the great potential of screening,planting and cultivating B.napus according to production goals in improving production efficiency,providing a basis for better development and utilization of B.napus.展开更多
Polymyxin B(PB),as the last-line of defense against multidrug-resistant Gram-negative bacteria,has caused resistance to P.aeruginosa recently.Fortunately,synergistic treatment could preserve the last class of antibiot...Polymyxin B(PB),as the last-line of defense against multidrug-resistant Gram-negative bacteria,has caused resistance to P.aeruginosa recently.Fortunately,synergistic treatment could preserve the last class of antibiotics and reduce the emergency of drug resistance.Here,we performed a screen of 970 approved drugs synergized with PB against the P.aeruginosa DK2,which is severely resistant to PB,MIC=512μg/mL.Encouragingly,we found fluoroquinolones could synergy with PB and achieved an obvious reduction in MIC of PB below the clinical susceptible breakpoint(2 μg/mL).Especially,gemifloxacin achieved the highest synergistic effect with PB,leading to a 4096-fold MIC reduction(reduced from512 μg/mL to 0.125 μg/mL).Furthermore,synergistic effect was also observed in the combination of gemifloxacin and colistin.Finally,outer membrane permeabilization assay showed that gemifloxacin could increase the permeability of bacterial cell membranes for P.aeruginosa which partly explained the synergy mechanism.These results indicate that fluoroquinolones represent attractive synergists to address the emerging threat of polymyxin-resistant infections.展开更多
During infections,bacteria stimulate host cells to produce and release histamine,which is a key mediator of vital cellular processes in animals.However,the mechanisms underlying the bacterial cell’s ability to sense ...During infections,bacteria stimulate host cells to produce and release histamine,which is a key mediator of vital cellular processes in animals.However,the mechanisms underlying the bacterial cell’s ability to sense and respond to histamine are poorly understood.Herein,we show that HinK,a Lys R-type transcriptional regulator,is required to evoke responses to histamine in Pseudomonas aeruginosa,an important human pathogen.HinK directly binds to and activates the promoter of genes involved in histamine uptake and metabolism,iron acquisition,and Pseudomonas quinolone signal(PQS)biosynthesis.The transcriptional regulatory activity of HinK is induced when histamine is present,and it occurs when HinK binds with imidazole-4-acetic acid(Im AA),a histamine metabolite whose production in P.aeruginosa depends on the HinK-activated histamine uptake and utilization operon hin DAC-pa0222.Importantly,the inactivation of HinK inhibits diverse pathogenic phenotypes of P.aeruginosa.These results suggest that histamine acts as an interkingdom signal and provide insights into the mechanism used by pathogenic bacteria to exploit host regulatory signals to promote virulence.展开更多
In nature, bacteria must sense copper and tightly regulate gene expression to evade copper toxicity. Here,we identify a new copper-responsive two-component system named DsbRS in the important human pathogen Pseudomona...In nature, bacteria must sense copper and tightly regulate gene expression to evade copper toxicity. Here,we identify a new copper-responsive two-component system named DsbRS in the important human pathogen Pseudomonas aeruginosa;in this system, DsbS is a sensor histidine kinase, and DsbR, its cognate response regulator, directly induces the transcription of genes involved in protein disulfide bond formation(Dsb)(i.e., the dsbDEG operon and dsbB). In the absence of copper, DsbS acts as a phosphatase toward DsbR, thus blocking the transcription of Dsb genes. In the presence of copper, the metal ion directly binds to the sensor domain of DsbS, and the Cys82 residue plays a critical role in this process. The copperbinding behavior appears to inhibit the phosphatase activity of DsbS, leading to the activation of DsbR.The copper resistance of the dsbRS knock-out mutant is restored by the ectopic expression of the dsbDEG operon, which is a DsbRS major target. Strikingly, cognates of the dsbRS-dsbDEG pair are widely distributed across eubacteria. In addition, a DsbR-binding site, which contains the consensus sequence 5’-TTA-N8-TTAA-3’, is detected in the promoter region of dsbDEG homologs in these species. These findings suggest that the regulation of Dsb genes by DsbRS represents a novel mechanism by which bacterial cells cope with copper stress.展开更多
In order to develop novel LpxC inhibitors with good activities and metabolic stability, two series of compounds with hydrophilic terminus have been synthesized and their in vitro antibacterial activities against Esche...In order to develop novel LpxC inhibitors with good activities and metabolic stability, two series of compounds with hydrophilic terminus have been synthesized and their in vitro antibacterial activities against Escherichial coil and Pseudomonas aemginosa were evaluated. Especially, compounds 22b and c exhibited comparable antibacterial activities to CHIR-090 and better metabolic stability than CHIR-090 and LPC-011 in liver microsomes (rat and mouse), which indicated the terminal methylsulfone may be a preferred structure in the design of LpxC inhibitors and worthy of further investigations.展开更多
基金Supported by Key R&D Program of Hebei Provincial Department of Science and Technology(20326318D)the Oil Plant Innovation Team of Hebei Provincial Modern Agricultural Industry Technology System(HBCT2018090403,HBCT2018090204)。
文摘During the past 30 years,Brassica napus L.has grown rapidly worldwide,and the emergence of a large number of innovative rape varieties has provided tremendous support for the food,feed,biofuel and ornamental markets.This paper summarized the research on B.napus variety screening,supporting cultivation techniques and breeding and utilization of fine varieties,and discussed the great potential of screening,planting and cultivating B.napus according to production goals in improving production efficiency,providing a basis for better development and utilization of B.napus.
基金supported by the National Key R&D Program of China(No.2017YFB0202600)the National Natural Science Foundation of China(Nos.21672064,21702061,81861138047)+3 种基金the Innovative Research Team of High-level Local Universities in Shanghaithe National Special Fund for State Key Laboratory of Bioreactor Engineering(No.2060204)"Shu Guang"project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.14SG28)the Shanghai Sailing Program(No.17YF1403600)。
文摘Polymyxin B(PB),as the last-line of defense against multidrug-resistant Gram-negative bacteria,has caused resistance to P.aeruginosa recently.Fortunately,synergistic treatment could preserve the last class of antibiotics and reduce the emergency of drug resistance.Here,we performed a screen of 970 approved drugs synergized with PB against the P.aeruginosa DK2,which is severely resistant to PB,MIC=512μg/mL.Encouragingly,we found fluoroquinolones could synergy with PB and achieved an obvious reduction in MIC of PB below the clinical susceptible breakpoint(2 μg/mL).Especially,gemifloxacin achieved the highest synergistic effect with PB,leading to a 4096-fold MIC reduction(reduced from512 μg/mL to 0.125 μg/mL).Furthermore,synergistic effect was also observed in the combination of gemifloxacin and colistin.Finally,outer membrane permeabilization assay showed that gemifloxacin could increase the permeability of bacterial cell membranes for P.aeruginosa which partly explained the synergy mechanism.These results indicate that fluoroquinolones represent attractive synergists to address the emerging threat of polymyxin-resistant infections.
基金supported by the Ministry of Science and Technology(MOST)of China(2016YFA0501503 and 2019ZX09721001-004-003)the National Natural Science Foundation of China(31670136,31870127,and 81861138047)+1 种基金the Science and Technology Commission of Shanghai Municipality(19JC1416400)the State Key Laboratory of Drug Research(SIMM2003ZZ-03)。
文摘During infections,bacteria stimulate host cells to produce and release histamine,which is a key mediator of vital cellular processes in animals.However,the mechanisms underlying the bacterial cell’s ability to sense and respond to histamine are poorly understood.Herein,we show that HinK,a Lys R-type transcriptional regulator,is required to evoke responses to histamine in Pseudomonas aeruginosa,an important human pathogen.HinK directly binds to and activates the promoter of genes involved in histamine uptake and metabolism,iron acquisition,and Pseudomonas quinolone signal(PQS)biosynthesis.The transcriptional regulatory activity of HinK is induced when histamine is present,and it occurs when HinK binds with imidazole-4-acetic acid(Im AA),a histamine metabolite whose production in P.aeruginosa depends on the HinK-activated histamine uptake and utilization operon hin DAC-pa0222.Importantly,the inactivation of HinK inhibits diverse pathogenic phenotypes of P.aeruginosa.These results suggest that histamine acts as an interkingdom signal and provide insights into the mechanism used by pathogenic bacteria to exploit host regulatory signals to promote virulence.
基金supported by the National Key R&D Program of China(2016YFA0501503)the National Mega-project for Innovative Drugs of China(2019ZX09721001-004-003)+2 种基金the National Natural Science Foundation of China(31670136 31870127 and 81861138047)the Science and Technology Commission of Shanghai Municipality(19JC1416400)the State Key Laboratory of Drug Research(SIMM2003ZZ-03).
文摘In nature, bacteria must sense copper and tightly regulate gene expression to evade copper toxicity. Here,we identify a new copper-responsive two-component system named DsbRS in the important human pathogen Pseudomonas aeruginosa;in this system, DsbS is a sensor histidine kinase, and DsbR, its cognate response regulator, directly induces the transcription of genes involved in protein disulfide bond formation(Dsb)(i.e., the dsbDEG operon and dsbB). In the absence of copper, DsbS acts as a phosphatase toward DsbR, thus blocking the transcription of Dsb genes. In the presence of copper, the metal ion directly binds to the sensor domain of DsbS, and the Cys82 residue plays a critical role in this process. The copperbinding behavior appears to inhibit the phosphatase activity of DsbS, leading to the activation of DsbR.The copper resistance of the dsbRS knock-out mutant is restored by the ectopic expression of the dsbDEG operon, which is a DsbRS major target. Strikingly, cognates of the dsbRS-dsbDEG pair are widely distributed across eubacteria. In addition, a DsbR-binding site, which contains the consensus sequence 5’-TTA-N8-TTAA-3’, is detected in the promoter region of dsbDEG homologs in these species. These findings suggest that the regulation of Dsb genes by DsbRS represents a novel mechanism by which bacterial cells cope with copper stress.
基金National Science and Technology Major Project for the support of this researchsupported by Key New Drug Creation and Manufacturing Program,China (No.2014ZX09507009-016)
文摘In order to develop novel LpxC inhibitors with good activities and metabolic stability, two series of compounds with hydrophilic terminus have been synthesized and their in vitro antibacterial activities against Escherichial coil and Pseudomonas aemginosa were evaluated. Especially, compounds 22b and c exhibited comparable antibacterial activities to CHIR-090 and better metabolic stability than CHIR-090 and LPC-011 in liver microsomes (rat and mouse), which indicated the terminal methylsulfone may be a preferred structure in the design of LpxC inhibitors and worthy of further investigations.