Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial proce...Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli.Once the brain switches its functional states,microglia are recruited to specific sites to exert their immune functions,including the release of cytokines and phagocytosis of cellular debris.The crosstalk of microglia between neurons,neural stem cells,endothelial cells,oligodendrocytes,and astrocytes contributes to their functions in synapse pruning,neurogenesis,vascularization,myelination,and blood-brain barrier permeability.In this review,we highlight the neuron-derived“find-me,”“eat-me,”and“don't eat-me”molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development.This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease,thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.展开更多
The friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr(wt%,GZ60K)alloy were evaluated under simulated body fluid(SBF)condition using ball-on-disk configuration and compared with those under dry sliding co...The friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr(wt%,GZ60K)alloy were evaluated under simulated body fluid(SBF)condition using ball-on-disk configuration and compared with those under dry sliding condition.The results show that under dry sliding and SBF conditions,the friction coefficient declines with increasing applied load and keeps stable with prolonging sliding time.The friction coefficient of the alloy effectively decreases in SBF as compared to dry sliding due to lubrication caused by SBF.The real wear rates under SBF condition are lower than those under dry sliding condition for each parameter.Nevertheless,the nominal wear rates are higher in SBF which are attributed to the more mass loss caused by corrosion but not wear.Both the nominal wear rate in SBF and the dry sliding wear rate increase with increasing applied load,and they decline firstly and then keep stable with prolonging sliding time.It is concluded that the wear of the alloy is restricted by the SBF,but the corrosion of the alloy is aggravated by the wear.展开更多
Adhesion G protein-coupled receptors(aGPCRs)are the second largest diverse group within the GPCR superfamily,which play critical roles in many physiological and patho-logical processes through cell-cell and cell-extra...Adhesion G protein-coupled receptors(aGPCRs)are the second largest diverse group within the GPCR superfamily,which play critical roles in many physiological and patho-logical processes through cell-cell and cell-extracellular matrix interactions.The adhesion GPCR Adgrg6,also known as GPR126,is one of the better-characterized aGPCRs.GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals.Current studies have extended our understanding of GPR126-mediated roles during develop-ment and in human diseases.In this review,we highlighted these recent advances in GPR126 in expression profile,molecular structure,ligand-receptor interactions,and associated physiological and pathological functions in development and diseases.展开更多
基金supported by the National Natural Science Foundation of ChinaNo.32200778(to QC)+5 种基金the Natural Science Foundation of Jiangsu ProvinceNo.BK20220494(to QC)Suzhou Medical and Health Technology Innovation ProjectNo.SKY2022107(to QC)a grant from the Clinical Research Center of Neurological Disease in The Second Affiliated Hospital of Soochow UniversityNos.ND2022A04(to QC)and ND2023B06(to JS)。
文摘Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli.Once the brain switches its functional states,microglia are recruited to specific sites to exert their immune functions,including the release of cytokines and phagocytosis of cellular debris.The crosstalk of microglia between neurons,neural stem cells,endothelial cells,oligodendrocytes,and astrocytes contributes to their functions in synapse pruning,neurogenesis,vascularization,myelination,and blood-brain barrier permeability.In this review,we highlight the neuron-derived“find-me,”“eat-me,”and“don't eat-me”molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development.This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease,thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.
基金supported by the Natural Science Foundation of Jiangsu Province for Outstanding Youth(BK20160081)the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(ASMA201503)+1 种基金the Innovative Foundation Project for Students of Nanjing Institute of Technology(TP20170011)the Six Talent Peaks(2015-XCL-025)of Jiangsu Province,and the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.
文摘The friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr(wt%,GZ60K)alloy were evaluated under simulated body fluid(SBF)condition using ball-on-disk configuration and compared with those under dry sliding condition.The results show that under dry sliding and SBF conditions,the friction coefficient declines with increasing applied load and keeps stable with prolonging sliding time.The friction coefficient of the alloy effectively decreases in SBF as compared to dry sliding due to lubrication caused by SBF.The real wear rates under SBF condition are lower than those under dry sliding condition for each parameter.Nevertheless,the nominal wear rates are higher in SBF which are attributed to the more mass loss caused by corrosion but not wear.Both the nominal wear rate in SBF and the dry sliding wear rate increase with increasing applied load,and they decline firstly and then keep stable with prolonging sliding time.It is concluded that the wear of the alloy is restricted by the SBF,but the corrosion of the alloy is aggravated by the wear.
基金supported by the National Natural Science Foundation of China(No.32200778)the Natural Science Foundation of Jiangsu Province,China(No.BK20220494)+3 种基金Suzhou Medical and Health Technology Innovation Project(China)(No.SKY2022107)startup fund of Soochow University(China)(No.NH21500221,NH21500122)the Clinical Research Center of Neurological Disease in The Second Affiliated Hospital of Soochow University,China(No.ND2022A04 to Qifei Cong)the Nantong Municipal Health and Family Planning Commission(China)(No.QA2021017 to Xin Chu).
文摘Adhesion G protein-coupled receptors(aGPCRs)are the second largest diverse group within the GPCR superfamily,which play critical roles in many physiological and patho-logical processes through cell-cell and cell-extracellular matrix interactions.The adhesion GPCR Adgrg6,also known as GPR126,is one of the better-characterized aGPCRs.GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals.Current studies have extended our understanding of GPR126-mediated roles during develop-ment and in human diseases.In this review,we highlighted these recent advances in GPR126 in expression profile,molecular structure,ligand-receptor interactions,and associated physiological and pathological functions in development and diseases.