The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achi...The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.展开更多
Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskit...Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskite solar cells(PSCs)have achieved a boost of the power conversion efficiency(PCE)from 3.8%to 25.2%in just a decade.With the continuous growth of PCE in single-junction PSCs,exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs.In this review,we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell.We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device:tunnel recombination junction,wide-bandgap top subcell,and narrow-bandgap bottom subcell.Finally,we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.展开更多
Metal halide perovskite solar cells(PSCs)have attracted tremendous attention as an emerging photovoltaic technology due to their high efficiency,low cost and ease of fabrication from earth-abundant materials[1,2].The ...Metal halide perovskite solar cells(PSCs)have attracted tremendous attention as an emerging photovoltaic technology due to their high efficiency,low cost and ease of fabrication from earth-abundant materials[1,2].The power conversion efficiencies(PCEs)have been rapidly boosted from 3.8%in the pioneer’s work to a certified 24.2%nowadays in just ten years[3].The PCE breakthroughs in PSCs have mostly adopted full lead-based perovskites(APbX3)with bandgaps of 1.5–1.6 eV.展开更多
基金financially supported by the National Key R&D Program of China(2018YFB1500102,2018YFB2200101)the National Natural Science Foundation of China(61974063,61921005)+3 种基金Natural Science Foundation of Jiangsu Province(BK20190315)the Fundamental Research Funds for the Central Universities(14380168)the Thousand Talent Program for Young Outstanding Scientists in ChinaProgram for Innovative Talents and Entrepreneur in Jiangsu。
文摘The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.
基金financially supported by the National Key R&D Program of China(2018YFB1500102)National Natural Science Foundation of China(61974063)+2 种基金Natural Science Foundation of Jiangsu Province(BK20190315,BZ2018008)Program for Innovative Talents and Entrepreneur in JiangsuThousand Talent Program for Young Outstanding Scientists in China.
文摘Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskite solar cells(PSCs)have achieved a boost of the power conversion efficiency(PCE)from 3.8%to 25.2%in just a decade.With the continuous growth of PCE in single-junction PSCs,exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs.In this review,we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell.We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device:tunnel recombination junction,wide-bandgap top subcell,and narrow-bandgap bottom subcell.Finally,we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.
基金supported by the National Key R&D Program of China(2018YFB1500102)the Thousand Talent Program for Young Outstanding Scientists in China+1 种基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21572041 and 21772030)for financial support
文摘Metal halide perovskite solar cells(PSCs)have attracted tremendous attention as an emerging photovoltaic technology due to their high efficiency,low cost and ease of fabrication from earth-abundant materials[1,2].The power conversion efficiencies(PCEs)have been rapidly boosted from 3.8%in the pioneer’s work to a certified 24.2%nowadays in just ten years[3].The PCE breakthroughs in PSCs have mostly adopted full lead-based perovskites(APbX3)with bandgaps of 1.5–1.6 eV.