The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cel...The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cell types and heterogeneity in the respiratory system,the relevant specific spatial localization and cellular interactions have not been clearly elucidated.Spatial transcriptomics(ST)has filled this gap and has been widely used in respiratory studies.This review focuses on the latest iterative technology of ST in recent years,summarizing how ST can be applied to the physiological and pathological processes of the respiratory system,with emphasis on the lungs.Finally,the current challenges and potential development directions are proposed,including high-throughput full-length transcriptome,integration of multi-omics,temporal and spatial omics,bioinformatics analysis,etc.These viewpoints are expected to advance the study of systematic mechanisms,including respiratory studies.展开更多
Over the past decade,there has been increasing attention on the interaction between microbiota and bile acid metabolism.Bile acids are not only involved in the metabolism of nutrients,but are also important in signal ...Over the past decade,there has been increasing attention on the interaction between microbiota and bile acid metabolism.Bile acids are not only involved in the metabolism of nutrients,but are also important in signal transduction for the regulation of host physiological activities.Microbial-regulated bile acid metabolism has been proven to affect many diseases,but there have not been many studies of disease regulation by microbial receptor signaling pathways.This review considers findings of recent research on the core roles of farnesoid X receptor(FXR),G protein-coupled bile acid receptor(TGR5),and vitamin D receptor(VDR)signaling pathways in microbial–host interactions in health and disease.Studying the relationship between these pathways can help us understand the pathogenesis of human diseases,and lead to new solutions for their treatments.展开更多
基金supported by the National Natural Science Foundation of China(82271629)the Central Funds Guiding the Local Science and Technology Development of Shenzhen(2021Szvup024)+1 种基金the Jiangsu Provincial Key Research and Development Program(BE2021664)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0312)。
文摘The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cell types and heterogeneity in the respiratory system,the relevant specific spatial localization and cellular interactions have not been clearly elucidated.Spatial transcriptomics(ST)has filled this gap and has been widely used in respiratory studies.This review focuses on the latest iterative technology of ST in recent years,summarizing how ST can be applied to the physiological and pathological processes of the respiratory system,with emphasis on the lungs.Finally,the current challenges and potential development directions are proposed,including high-throughput full-length transcriptome,integration of multi-omics,temporal and spatial omics,bioinformatics analysis,etc.These viewpoints are expected to advance the study of systematic mechanisms,including respiratory studies.
基金Project supported by the National Key Research and Development Program of China(No.2016YFA0501602)the National Natural Science Foundation of China(Nos.61801108 and 81801478)
文摘Over the past decade,there has been increasing attention on the interaction between microbiota and bile acid metabolism.Bile acids are not only involved in the metabolism of nutrients,but are also important in signal transduction for the regulation of host physiological activities.Microbial-regulated bile acid metabolism has been proven to affect many diseases,but there have not been many studies of disease regulation by microbial receptor signaling pathways.This review considers findings of recent research on the core roles of farnesoid X receptor(FXR),G protein-coupled bile acid receptor(TGR5),and vitamin D receptor(VDR)signaling pathways in microbial–host interactions in health and disease.Studying the relationship between these pathways can help us understand the pathogenesis of human diseases,and lead to new solutions for their treatments.