Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ...Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research.展开更多
The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying elec...The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.展开更多
Enormous LiFePO_(4)(LFP)/graphite batteries retired from the market need urgent rational disposal and reutilization based on the degradation analysis of the evolutional mechanism for electrodes.Typically,Li inventory ...Enormous LiFePO_(4)(LFP)/graphite batteries retired from the market need urgent rational disposal and reutilization based on the degradation analysis of the evolutional mechanism for electrodes.Typically,Li inventory loss is one of the main reasons for the degradation of LFP-based batteries.The reduced portion of lithium in a cathode is inevitably consumed to form solid electrolyte interphase or trapped in the anode.Herein,we propose a comprehensive strategy for battery recycling and conduct the work by simply regenerating the degraded LFP materials directly with the extracted lithium compounds from spent anodes.Moreover,inter-particle three-dimensional(3D)conductive networks are built via an in situ carbonization to reinforce the electronic conductivity of regenerated cathodes.An improved electrochemical performance was achieved in the regenerated LFP materials even compared with the pristine LFP.This integrated recycling strategy not only brings more added value to the recycled materials by leveraging the recycling process but also aims to apply the concept of“treating waste with waste”and spur innovations in battery recycling technologies in the future.展开更多
Dear Editor,Colorectal cancer(CRC)is one of the most frequent diseases with high mortality around the world.Conventional treatments of CRC remain unsatisfactory due to the increasing recurrence rate and adverse reacti...Dear Editor,Colorectal cancer(CRC)is one of the most frequent diseases with high mortality around the world.Conventional treatments of CRC remain unsatisfactory due to the increasing recurrence rate and adverse reactions including neutropenia,drug resistance,etc.Recently,autophagy has been shown to be involved in regulating cancer development and progression by regulating apoptosis through pro-apoptosis proteins including caspases,in addition to being a potential target for cancer therapeutic intervention.1 Trifolirhizin(Supplementary Fig.S1a)is a natural flavonoid glycosides isolated from Sophora flavescens as well as a bioactive constituent of Xian-Lian-Ke-Li,a commercial traditional Chinese medicine for the cancer prevention.Numerous evidence manifested that trifolirhizin inhibited proliferative activity in melanoma B16 cell,lung cancer H23 cell,human ovarian A2780 cell,and human gastric cancer cell MKN45.2 However,its pharmacological effect and mechanism on CRC remain elusive.Herein,we evaluated the effect of trifolirhizin on autophagy and apoptosis on CRC as well as its related mechanisms,in order to provide evidence to develop a potential agent with less adverse effect in treating CRC.展开更多
Lithium-ion batteries(LIBs)are booming in multiple fields due to a rapid devel-opment in the last decade.However,limited by operational lifespans,a grow-ing number of spent LIBs reaching the end of their lives are con...Lithium-ion batteries(LIBs)are booming in multiple fields due to a rapid devel-opment in the last decade.However,limited by operational lifespans,a grow-ing number of spent LIBs reaching the end of their lives are consequently faced with serious accumulation and descended to hazardous waste.Without proper disposal,the spent LIBs will inevitably cause negative influence on the ecol-ogy and undermine the sustainable manufacture of LIBs.The initial research of recycling strategies mainly focused on the optimization of metallurgical pro-cesses.Recently,the sustainability of the recycling process has attracted much more attention and become an important factor.Here,we summarize the recent progress of the spent LIBs recycling from a sustainable perspective,especially discussing the green innovations in recycling strategies for spent LIBs.Through this article,we expect to reveal the challenges and developing tendency of the recycling strategies and provide a guideline for future researches on process-ing spent LIBs and beyond,like the recycling of the solid-state lithium metal batteries.展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-058)the Basic Science Center Project of National Natural Science Foundation of China(52388201)+57 种基金the Beijing Natural Science Foundation(JQ22005)financially supported by the National Key R&D Program of China(2022YFB2404400)the National Natural Science Foundation of China(92263206,21875007,21975006,21974007,and U19A2018)the Youth Beijing Scholars program(PXM2021_014204_000023)the Beijing Natural Science Foundation(2222001 and KZ202010005007)supported by the National Key R&D Program of China(2021YFB2400200)the Youth Innovation Promotion Association CAS(2023040)the National Natural Science Foundation of China(22279148 and 21905286)the Beijing Natural Science Foundation(Z220021)supported by Beijing Municipal Natural Science Foundation(Z200011)National Key Research and Development Program(2021YFB2500300,2021YFB2400300)National Natural Science Foundation of China(22308190,22109084,22108151,22075029,and 22061132002)Key Research and Development Program of Yunnan Province(202103AA080019)the S&T Program of Hebei Province(22344402D)China Postdoctoral Science Foundation(2022TQ0165)Tsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research Fundthe Institute of Strategic Research,Huawei Technologies Co.,LtdOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Shuimu Tsinghua Scholar Program of Tsinghua Universityfinancially supported by the National Key R&D Program of China(2021YFB2400300)National Natural Science Foundation of China(22179083)Program of Shanghai Academic Research Leader(20XD1401900)Key-Area Research and Development Program of Guangdong Province(2019B090908001)financially supported by the National Key R&D Program of China(2020YFE0204500)the National Natural Science Foundation of China(52071311,52271140)Jilin Province Science and Technology Development Plan Funding Project(20220201112GX)Changchun Science and Technology Development Plan Funding Project(21ZY06)Youth Innovation Promotion Association CAS(2020230,2021223)supported by the National Natural Science Foundation of China(51971124,52171217,52202284 and 52250710680)the State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University(EIPE22208)Zhejiang Natural Science Foundation(LZ21E010001,LQ23E020002)Wenzhou Natural Science Foundation(G20220019,G20220021,ZG2022032,G2023027)Science and Technology Project of State Grid Corporation of China(5419-202158503A-0-5-ZN)Wenzhou Key Scientific and Technological Innovation Research Projects(ZG2023053)Cooperation between industry and education project of Ministry of Education(220601318235513)supported by the Australian Research Council(DP210101486 and FL210100050)supported by the National Natural Science Foundation of China(22179135,22109168,52072195,and 21975271)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010603,XDA22010600)Taishan Scholars Program for Young Expert of Shandong Province(tsqn202103145)Shandong Energy Institute(SEI I202108 and SEI I202127)the China Postdoctoral Science Foundation(BX20200344,2020M682251)supported by the National Key R&D Program of China(2022YFB2402200)the National Natural Science Foundation of China(22121005,22020102002,and 21835004)the Frontiers Science Center for New Organic Matter of Nankai University(63181206)the Haihe Laboratory of Sustainable Chemical Transformationssupported by National Key Research and Development Program of China(2022YFB2404500)Shenzhen Outstanding Talents Training Fundsupported by the National Key R&D Program of China(2019YFA0705104)GRF under the project number City U 11305218supported from National Natural Science Foundation of China(22078313,21925804)Free exploring basic research project of Liaoning(2022JH6/100100005)Youth Innovation Promotion Association CAS(2019182)supported from the Research Center for industries of the Future(RCIF)at Westlake Universitythe start-up fund from Westlake Universitysupported by the National Key R&D Program of China(2020YFB2007400)the National Natural Science Foundation of China(22075317)the Strategic Priority Research Program(B)(XDB07030200)of Chinese Academy of Sciences。
文摘Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research.
基金supported by the National Key R&D Program of China(2021YFB2400200)the CAS Project for Young Scientists in Basic Research(YSBR-058)+4 种基金the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070300)the National Natural Science Foundation of China(22279148,21905286 and 22005314)the China Postdoctoral Science Foundation(2019M660805)the Special Financial Grant from the China Postdoctoral Science Foundation(2020T130658)Beijing National Laboratory for Molecular Sciences(2019BMS20022)。
文摘The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China under grant no.51788104,the National Key R&D Program of China(grant no.2021YFB2400200)the National Natural Science Foundation of China(grant nos.21905286,21773264,51772301)the“Transformational Technologies for Clean Energy and Demonstration,”Strategic Priority Research Program of the Chinese Academy of Sciences,grant no.XDA21070300.
文摘Enormous LiFePO_(4)(LFP)/graphite batteries retired from the market need urgent rational disposal and reutilization based on the degradation analysis of the evolutional mechanism for electrodes.Typically,Li inventory loss is one of the main reasons for the degradation of LFP-based batteries.The reduced portion of lithium in a cathode is inevitably consumed to form solid electrolyte interphase or trapped in the anode.Herein,we propose a comprehensive strategy for battery recycling and conduct the work by simply regenerating the degraded LFP materials directly with the extracted lithium compounds from spent anodes.Moreover,inter-particle three-dimensional(3D)conductive networks are built via an in situ carbonization to reinforce the electronic conductivity of regenerated cathodes.An improved electrochemical performance was achieved in the regenerated LFP materials even compared with the pristine LFP.This integrated recycling strategy not only brings more added value to the recycled materials by leveraging the recycling process but also aims to apply the concept of“treating waste with waste”and spur innovations in battery recycling technologies in the future.
基金supported by the National Natural Science Foundation of China(81930117,81673559,81973523)National Key Research and Development Project(2017YFC1700602)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Dear Editor,Colorectal cancer(CRC)is one of the most frequent diseases with high mortality around the world.Conventional treatments of CRC remain unsatisfactory due to the increasing recurrence rate and adverse reactions including neutropenia,drug resistance,etc.Recently,autophagy has been shown to be involved in regulating cancer development and progression by regulating apoptosis through pro-apoptosis proteins including caspases,in addition to being a potential target for cancer therapeutic intervention.1 Trifolirhizin(Supplementary Fig.S1a)is a natural flavonoid glycosides isolated from Sophora flavescens as well as a bioactive constituent of Xian-Lian-Ke-Li,a commercial traditional Chinese medicine for the cancer prevention.Numerous evidence manifested that trifolirhizin inhibited proliferative activity in melanoma B16 cell,lung cancer H23 cell,human ovarian A2780 cell,and human gastric cancer cell MKN45.2 However,its pharmacological effect and mechanism on CRC remain elusive.Herein,we evaluated the effect of trifolirhizin on autophagy and apoptosis on CRC as well as its related mechanisms,in order to provide evidence to develop a potential agent with less adverse effect in treating CRC.
基金“Transformational Technologies for Clean Energy and Demonstration,”Strategic Priority Research Program of the Chi-nese Academy of Sciences,Grant/Award Number:XDA21070300the National Natural Science Foundation of China,Grant/Award Numbers:51772301,21773264,21905286the China Postdoc-toral Science Foundation,Grant/Award Numbers:2017LH028,2017M620913。
文摘Lithium-ion batteries(LIBs)are booming in multiple fields due to a rapid devel-opment in the last decade.However,limited by operational lifespans,a grow-ing number of spent LIBs reaching the end of their lives are consequently faced with serious accumulation and descended to hazardous waste.Without proper disposal,the spent LIBs will inevitably cause negative influence on the ecol-ogy and undermine the sustainable manufacture of LIBs.The initial research of recycling strategies mainly focused on the optimization of metallurgical pro-cesses.Recently,the sustainability of the recycling process has attracted much more attention and become an important factor.Here,we summarize the recent progress of the spent LIBs recycling from a sustainable perspective,especially discussing the green innovations in recycling strategies for spent LIBs.Through this article,we expect to reveal the challenges and developing tendency of the recycling strategies and provide a guideline for future researches on process-ing spent LIBs and beyond,like the recycling of the solid-state lithium metal batteries.