Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
Objective: To analyze the correlation between visceral fat area and insulin resistance index (HOMA-IR) in patients with type 2 diabetes mellitus (T2DM) and abdominal obesity and to provide a reference for screening an...Objective: To analyze the correlation between visceral fat area and insulin resistance index (HOMA-IR) in patients with type 2 diabetes mellitus (T2DM) and abdominal obesity and to provide a reference for screening and related research of such patients. Methods: Two hundred patients with T2DM admitted to Guandu People’s Hospital of Kunming were included. The study was carried out from October 2022 to December 2023. The patients were divided into three groups according to different abdominal visceral fat areas (VFA): Group A (n = 65) was less than 75cm2, Group B (n = 75) was 75-100 cm2, and Group C (n = 60) was greater than 100 cm2. The subjects in the three groups were all tested for glycated hemoglobin (HbA1c), fasting insulin (FINS), and fasting blood glucose (FPG). Height and weight were measured to calculate body mass index (BMI). The HOMA-IR and TYG (fasting triglyceride and glycemic index) were also calculated. Changes in the BMI, VFA, HOMA-IR, and TYG levels were observed in the three groups. Results: The VFA, BMI, HbA1c, FPG, FINS, HOMA-IR, and TYG of the patients all increased, with a more significant increase in the BMI, FINS, HOMA-IR, and TYG levels (P < 0.01). Multiple linear stepwise regression analyses used visceral fat area (VFA) as the dependent variable. The results showed that VFA was closely related to BMI, FINS, HOMA-IR, and TYG. Conclusion: Early reduction of VFA to reduce insulin resistance may be a better treatment and effective method for T2DM, providing powerful measures and new strategies for effective blood sugar control and early prevention in the treatment of metabolic diseases.展开更多
All inorganic CsPbI_(3)perovskite solar cells(PSCs)have emerged as disruptive photovoltaic technology owing to their admirable photoelectric properties and the non-volatile active layer.However,the phase instability a...All inorganic CsPbI_(3)perovskite solar cells(PSCs)have emerged as disruptive photovoltaic technology owing to their admirable photoelectric properties and the non-volatile active layer.However,the phase instability against moisture severely limits the fabrication environment for the high-efficiency devices,breaking through the confinement region to achieve scalable manufacturing has been the primary issue for future commercialization.Here,we develop a curing-anti-solvent strategy for fabricating high-quality and stable black-phase CsPbI_(3)perovskite films in ambient air by introducing an inorganic polymer perhydropolysilazane(PHPS)into methyl acetate to form anti-template agent.The cross-linked PHPS reduces moisture erosions while the hydrolyzate silanol network(–Si(OH)_(4)^(–))controls the perovskite crystal growth by forming Lewis adducts with PbI_(2)during the fabrication.The polycondensation adduct of Si–O–Si/Si–O–Pb strongly binds to CsPbI_(3)grains as a shield layer to hamper phase transition.Using the inorganic CsPbI_(3)perovskite thin-film with PHPS-modified anti-solvent processing as the light absorber,the n–i–p planar solar cell achieved an efficiency of 19.17%under standard illumination test conditions.More importantly,the devices showed excellent moisture stability,retaining about 90%of the initial efficiency after 1000 h under 30%RH.展开更多
Barnyardgrass (Echinochloa spp.) is the most common noxious weed in rice paddies as it inhibits rice growth and reduces grain yield.To date,little information is available on above-and belowgroundgrowth changes in ric...Barnyardgrass (Echinochloa spp.) is the most common noxious weed in rice paddies as it inhibits rice growth and reduces grain yield.To date,little information is available on above-and belowgroundgrowth changes in rice due to neighboring barnyardgrass.This study aimed to investigate the changes in root traits and shoot growth of rice when it is grown with different kinds of barnyardgrass.Japonica rice plants (var.Nanjing 9108) were co-cultured with two varieties of Echinochloa crusgalli (L.) Beauv.(EP,var.mitis (pursh) Petern;EH,var.zelayensis (H.B.K.) Hitchc),and E.colonum (L.) Link (EL) in the field in 2017 and 2018.Four treatments included control (i.e.,weed free rice plants) and co-cultures with each of three barnyardgrasses (EP,EH,and EL).The results revealed that EP,EH,and EL treatments significantly reduced rice grain yields by 30.6%–36.2%,42.5%–46.5%,and 10.6%–14.3%,respectively.Shoot growth including shoot dry weight,leaf photosynthetic rate,zeatin (Z) and zeatin riboside (ZR) in grains,and activities of key enzymes involved in sucrose-to-starch conversion in grains and root traits,such as length density,root dry weight,total absorbing surface area,active absorption surface area,oxidation activity,and Z+ZR contents in roots were dramatically reduced during post-heading stages of rice when grown with the three kinds of barnyardgrass.Moreover,above-mentioned rice shoot growth indices were strongly and positively correlated with root traits.These results suggested the decrease in rice shoot growth and root traits during post-heading stages contributes to the reduction in the rice yield when it grows with barnyardgrass neighbors.展开更多
To adapt the practical demand,designing and constructing the multifunctional microwave absorbers(MAs)is the key future direction of research and development.However,effective integrating the multiple functions into a ...To adapt the practical demand,designing and constructing the multifunctional microwave absorbers(MAs)is the key future direction of research and development.However,effective integrating the multiple functions into a single material remains a huge challenge.Herein,cellular carbon foams(CCFs)with different porous structures were elaborately designed and fabricated in high efficiency through a facile continuous freeze-drying and carbonization processes using a sustainable biomass chitosan as the precursor.The obtained results revealed that the thermal treated temperature and g-C_(3)N_(4) amount played a great impact on the carbonization degrees,pore sizes,and morphologies of CCFs,which led to their tunable electromagnetic(EM)parameters,improved conduction loss,and polarization loss abilities.Owing to the special cellular structure,the designed CCFs samples simultaneously displayed the strong absorption capabilities,broad absorption bandwidths,and thin matching thicknesses.Meanwhile,the as-prepared CCFs exhibited the strong hydrophobicity and good thermal insulation,endowing its attractive functions of self-cleaning and thermal insulation.Therefore,our findings not only presented a facile approach to produce different porous structures of CCFs,but also provided an effective strategy to develop multifunctional high-performance MAs on basis of three-dimensional CCFs.展开更多
CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric res...CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric response of GRCB/CCTO ternary metacomposites were systematically investigated.The weakly real permittivity(ε′)-negative response(ε′~−1×10^(2))was achieved which originated from weakly low-frequency plasmonic state of free carriers within constructed GRCB networks.With enhancing three-dimensional GRCB network,the plasma frequency of metacomposites increased while the damping factor decreased.Herein,theε′-negative values of metacomposites were tuned from−10^(2) to−10^(4) orders of magnitude andε′-near-zero(ENZ)frequencies from~142 to~340 MHz which substantially benefited from the moderate carrier concentration of GRCB dual fillers.The Drude model and equivalent circuit models were adopted to demonstrate dielectric and electrical characteristics.The obtained metacomposites show strong EM shielding effect along with enhanced plasmonic oscillation and even better achieving perfect EM shielding effect in ENZ media.This work achieves the tunableε′-negative andε′-near-zero response and more importantly clarifies its regulation mechanism in ceramic-based ternary metacomposites,which opens up the possibility of designing high-performance EM shielding materials based on metacomposites.展开更多
Impedance matching characteristics and loss capabilities including magnetic loss,polarization loss and conduction loss are critical factors to improve microwave absorption performances(MAPs).To elevate these aspects,h...Impedance matching characteristics and loss capabilities including magnetic loss,polarization loss and conduction loss are critical factors to improve microwave absorption performances(MAPs).To elevate these aspects,herein,yolk-shell structured CoNi@Air@C/SiO_(2)@Polypyrrole(PPy)magnetic multicomponent nanocubes(MCNCs)were designed and successfully fabricated in high efficiency through a continuous co-precipitation route,classical Stöber method,thermal treatment and polymerization reaction.The obtained results indicated that the formation of SiO_(2) effectively stabilized the cubic geometrical morphology and yolk-shell structure during the high-temperature pyrolysis process.The introduction of PPy greatly boosted their polarization loss and conductive loss capabilities.Therefore,the as-prepared yolkshell structured CoNi@Air@C/SiO_(2)@PPy MCNCs presented superior MAPs compared to CoNi@Air@C/SiO_(2) MCNCs.Furthermore,by regulating the content of PPy,the obtained CoNi@Air@C/SiO_(2)@PPy MCNCs displayed tunable and excellent comprehensive MAPs in terms of strong absorption capabilities,broad frequency bandwidths and thin matching thicknesses,which could be ascribed to the unique structure and excellent magnetic-dielectric synergistic effect.Therefore,our findings provided an alternative pathway to effectively utilize the magnetic-dielectric synergy and loss capabilities for the developing yolk-shell structured magnetic MCNCs as the strong wideband microwave absorbers.展开更多
Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategie...Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategies,in this study,M Fe_(2)O_(4)and flower-like core@shell M Fe_(2)O_(4)@MoS_(2)(M=Mn,Ni,and Zn)sam-ples with different categories were elaborately designed and selectively produced in large scale through a simple two-step hydrothermal reaction.We conducted the systematical investigation on their microstruc-tures,electromagnetic parameters and microwave absorption performances(MAPs).The obtained results revealed that the large radius of M^(2+)cation could effectively boost the concentration of oxygen vacancy in the M Fe_(2)O_(4)and M Fe_(2)O_(4)@MoS_(2)samples,which resulted in the improvement of dielectric loss capabil-ities and MAPs.Furthermore,the introduction of MoS_(2)nanosheets greatly improved the interfacial effect and enhanced the polarization loss capabilities,which also boosted the MAPs.By taking full advantage of the defect and interface,the designed M Fe_(2)O_(4)@MoS_(2)samples displayed tunable and excellent com-prehensive MAPs including strong absorption capability,wide absorption bandwidth and thin matching thicknesses.Therefore,the clear understanding of defect and interface engineering made these strategies well elaborately designed and applicable to improving MAPs.展开更多
Due to the good manipulation of electronic structure and defect,anion regulating should be a promising strategy to regulate the electromagnetic(EM)parameters and optimize the EM wave absorption performances(EMWAPs).In...Due to the good manipulation of electronic structure and defect,anion regulating should be a promising strategy to regulate the electromagnetic(EM)parameters and optimize the EM wave absorption performances(EMWAPs).In this work,we proposed a facile route for the large-scale production of core@shell structured hollow carbon spheres@MoSxSe_(2−x)(x=0.2,0.6,and 1.0)multicomponent nanocomposites(MCNCs)through a mild template method followed by hydrothermal process.The obtained results revealed that the designed hollow carbon spheres@MoSxSe_(2−x)MCNCs presented the improved sulfur vacancy concentration by regulating the x value from 0.2 to 1.0.The obtained hollow carbon spheres@MoSxSe_(2−x)MCNCs displayed the extraordinary comprehensive EMWAPs because of the introduced abundant defects and excellent interfacial effects.Furthermore,the as-prepared hollow carbon spheres@MoSxSe_(2−x)MCNCs presented the progressively improved comprehensive EMWAPs with the x value increasing from 0.2 to 1.0,which could be explained by their boosted polarization loss abilities and impedance matching characteristics originating from the enhanced sulfur vacancy concentration.Therefore,our findings not only demonstrated that the anion regulating was a promising method to optimize EM parameters and EMWAPs,but also provided a facile route to design the transition metal dichalcogenides-based MCNCs as the much more attractive candidates for highperformance microwave absorbers.展开更多
Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(...Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(12)(CNT-CB/CCTO)ternary metacomposites were fabricated by spark plasma sintering.The CNT-CB dualphase filler was pre-pared through electrostatic selfassembly process in order to construct an effective 3-dimensional(3D)carbon network in CCTO matrix.The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt%which accompanied with an essential change of conduction mechanism.The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network,described by Drude model.The problem of heat transport,generally occurring in negative permittivity materials,has been solved and optimized in obtained ternary metacomposites beneftting from the substantially high thermal conductivity(9.49-2.00 W·m^(-1)·K^(-1))and diffusivity(2.74-1.22mm^(2)·s^(-1)).This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus.展开更多
The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe res...The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe resource for the manufacture of antimicrobial feed additive for livestock. The active constituents from M. cordata are known to include benzylisoquinoline alkaloids (BIAs) such as sanguinarine (SAN) and chelerythrine (CHE), but their metabolic pathways have yet to be studied in this non-model plant. The active biosynthesis of SAN and CHE in M. cordata was first examined and confirmed by feeding ^13C-labeled tyrosine. To gain further insights, we de novo sequenced the whole genome of M. cordata, the first to be sequenced from the Papaveraceae family. The M. cordata genome covering 378 Mb encodes 22,328 predicted protein-coding genes with 43.5% being transposable elements. As a member of basal eudicot, M. cordata genome lacks the paleohexaploidy event that occurred in almost all eudicots. From the genomics data, a complete set of 16 metabolic genes for SAN and CHE biosynthesis was retrieved, and 14 of their biochemical activities were validated. These genomics and metabolic data show the conserved BIA metabolic pathways in M. cordata and provide the knowledge foundation for future productions of SAN and CHE by crop improvement or microbial pathway reconstruction.展开更多
In order to effectively utilize the magnetic-dielectric synergy and interfacial engineering,in this paper,yolk–shell structured magnetic multicomponent nanocomposites(MCNCs)including CoNi@void@C and CoNi@void@C@MoS_(...In order to effectively utilize the magnetic-dielectric synergy and interfacial engineering,in this paper,yolk–shell structured magnetic multicomponent nanocomposites(MCNCs)including CoNi@void@C and CoNi@void@C@MoS_(2) were produced in large scale by in-situ pyrolysis of cubic CoNi Prussian blue analogs(PBAs)followed by the hydrothermal process,respectively.Because of their unique structures,excellent synergistic effect between dielectric and magnetic loss,the as-prepared CoNi@void@C and CoNi@void@C@MoS_(2) MCNCs displayed very outstanding electromagnetic wave absorption performances(EMWAPs)including strong absorption capabilities,broad absorption bandwidth and thin matching thicknesses.Furthermore,the as-prepared CoNi@void@C and CoNi@void@C@MoS_(2) MCNCs well maintained the cubic configuration of CoNi PBAs even after the thermal treatment and hydrothermal processes.The unique structure and formed carbon layers effectively prevented the corrosion of internal CoNi alloy during the formation of MoS_(2),and CoNi@void@C@MoS_(2) MCNCs with different MoS_(2) contents could be synthesized by controlling the hydrothermal temperature.The obtained results revealed that the EM parameters,dielectric and magnetic loss capabilities of CoNi@void@C@MoS_(2) MCNCs could be tuned by controlling hydrothermal temperature and filler loading,which made their outstanding EMWAPs could be achieved in different frequency regions.Taking account of simple process,low density and high chemical stability,our findings provided a new and effective pathway to develop the strong wideband microwave absorbers.展开更多
In this work,we put forward a scheme to exquisitely design and selectively synthesize the core@shell structured MSe_(2)/FeSe_(2)@MoSe_(2)(M=Co,Ni)flower-like multicomponent nanocomposites(MCNCs)through a simple two-st...In this work,we put forward a scheme to exquisitely design and selectively synthesize the core@shell structured MSe_(2)/FeSe_(2)@MoSe_(2)(M=Co,Ni)flower-like multicomponent nanocomposites(MCNCs)through a simple two-step hydrothermal reaction on the surfaces of MFe_(2)O_4 nanospheres with the certain amounts of Mo and Se sources.With increasing the amounts of Mo and Se sources,the obtained core@shell structured MSe_(2)/FeSe_(2)@MoSe_(2)(M=Co,Ni)MCNCs with the enhanced content of MoSe_(2)and improved flower-like geometry morphology could be produced on a large scale.The obtained results revealed that the as-prepared samples displayed improved comprehensive microwave absorption properties(CMAPs)with the increased amounts of Mo and Se sources.The as-prepared CoSe_(2)/FeSe_(2)@MoSe_(2)and NiSe_(2)/FeSe_(2)@MoSe_(2)MCNCs with the well-defined flower-like morphology could simultaneously present the outstanding CMAPs in terms of strong absorption capability,wide absorption bandwidth,and thin matching thicknesses,which mainly originated from the conduction loss and flower-like geometry morphology.Therefore,the findings not only develop the very desirable candidates for high-performance microwave absorption materials but also pave a new way for optimizing the CMAPs through tailoring morphology engineering.展开更多
The hexaploid species Echinochloa crus-galli is one of the most detrimental weeds in crop fields,especially in rice paddies.Its evolutionary history is similar to that of bread wheat,arising through polyploidization a...The hexaploid species Echinochloa crus-galli is one of the most detrimental weeds in crop fields,especially in rice paddies.Its evolutionary history is similar to that of bread wheat,arising through polyploidization after hybridization between a tetraploid and a diploid species.In this study,we generated and analyzed high-quality genome sequences of diploid(E.haploclada),tetraploid(E.oryzicola),and hexaploid(E.crus-galli)Echinochloa species.Gene family analysis showed a significant loss of disease-resistance genes such as those encoding NB-ARC domain-containing proteins during Echinochloa polyploidization,contrary to their significant expansionduring wheat polyploidization,suggesting that natural selection might favor reduced investment in resistance in this weed to maximize its growth and reproduction.In contrast to the asymmetric patterns of genome evolution observed in wheat and other crops,no significant differences in selection pressure were detected between the subgenomes in E.oryzicola and E.crus-galli.In addition,distinctive differences in subgenome transcriptome dynamics during hexaploidization were observed between E.crus-galli and bread wheat.Collectively,our study documents genomic mechanisms underlying the adaptation of a major agricultural weed during polyploidization.The genomic and transcriptomic resources of three Echinochloa species and new insights into the polyploidization-driven adaptive evolution would be useful for future breeding cereal crops.展开更多
Defect and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials.In order to effectively utilize these strategies for the improvement of microwave absorption pr...Defect and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials.In order to effectively utilize these strategies for the improvement of microwave absorption properties(MAPs),in this study,we reported the synthesis of hollow carbon shells and hollow carbon@MoS_(2)nanocomposites by the template-etching and templateetching-hydrothermal methods,respectively.The obtained results indicated that the degree of defect for hollow carbon shells and hollow carbon@MoS_(2)could be modulated by the thickness of hollow carbon shell,which effectively fulfilled the optimization of electromagnetic parameters and improvement of MAPs.Furthermore,the microstructure investigations revealed that the precursor of hollow carbon shells was encapsulated by the sheet-like MoS_(2)in high efficiency.And the introduction of MoS_(2)nanosheets acting as the shell effectively improved the interfacial effects and boosted the polarization loss capabilities,which resulted in the improvement of comprehensive MAPs.The elaborately designed hollow carbon@MoS_(2)samples displayed very outstanding MAPs including strong absorption capabilities,broad absorption bandwidth,and thin matching thicknesses.Therefore,this work provided a viable strategy to improve the MAPs of microwave absorbers by taking full advantage of their defect and interface engineering.展开更多
High-Speed Rail(HSR)has increasingly become an important mode of inter-city transportation between large cities.Inter-city interaction facilitated by HSR tends to play a more prominent role in promoting urban and regi...High-Speed Rail(HSR)has increasingly become an important mode of inter-city transportation between large cities.Inter-city interaction facilitated by HSR tends to play a more prominent role in promoting urban and regional economic integration and development.Quantifying the impact of HSR’s interaction on cities and people is therefore crucial for long-term urban and regional development planning and policy making.We develop an evaluation framework using toponym information from social media as a proxy to estimate the dynamics of such impact.This paper adopts two types of spatial information:toponyms from social media posts,and the geographical location information embedded in social media posts.The framework highlights the asymmetric nature of social interaction among cities,and proposes a series of metrics to quantify such impact from multiple perspectives-including interaction strength,spatial decay,and channel effect.The results show that HSRs not only greatly expand the uneven distribution of inter-city connections,but also significantly reshape the interactions that occur along HSR routes through the channel effect.展开更多
文摘质子交换膜燃料电池(PEMFCs)因其高能量密度、低操作温度和环保等特性,被视为极具潜力的能量转换系统.目前,碳载铂颗粒(Pt/C)是PEMFCs阴极氧还原反应(ORR)中使用最广泛的催化剂.然而,Pt与碳载体间的电子结构差异导致Pt纳米颗粒(Pt NPs)易从碳载体上脱落,严重降低了ORR的催化活性.此外,Pt的高成本和稀缺性也限制了其广泛应用.相比之下,Pt纳米枝晶(NDs)因具有高利用率的表面活性位点而备受关注.然而,Pt NDs的合成通常需要严格控制反应条件,且其与碳基底间的弱相互作用易导致活性位点损失和性能下降.因此,开发具有强金属载体相互作用的Pt复合碳催化剂对PEMFCs的实际应用至关重要.本文通过原位Cl-介导的生长策略,结合碳本征空位工程,成功制备了分散在富含碳本征空位的中空氮掺杂碳基底上的Pt NDs催化剂(Pt@HNC-V-800).拉曼光谱和电子顺磁共振光谱结果表明,碳本征空位的形成机制源于碳基底结构中氮原子的耗散,该过程引起碳原子的重新排列,进而产生了丰富的本征缺陷位点.X射线吸收光谱和X射线光电子能谱结果表明,与无碳空位的Pt@HNC催化剂相比,富含本征碳空位的样品(Pt@HNC-V-800)表现出较低的Pt-Pt键配位数(8.64)和更强的给电子效应.得益于Pt NDs丰富的活性位点及其与本征碳空位基底之间的强电子效应,Pt@HNC-V-800的ORR半波电位高达0.947 V,质量活性和比表面活性分别为1.55 A mg^(-1) Pt和1.85 mA cm^(-2),是商用Pt/C的8.2和6.8倍(0.191 A mg^(-1)Pt和0.27 mA cm^(-2)).加速耐久性测试结果表明,经20000次电势循环后,Pt@HNC-V-800的活性无明显变化,其活性损失远低于无碳本征空位的Pt@HNC材料和商业Pt/C催化剂.因此,与无碳本征空位的Pt@HNC材料相比,Pt@HNC-V-800的ORR活性和稳定性都有较大提升,进一步证实了碳本征空位工程协同Pt NDs策略的优越性.此外,密度泛函理论计算结果表明,Pt@HNC-V的丰富空位降低了氧中间体过电势,优化了ORR中间体在Pt NDs上的吸附能,进而提高了催化剂的ORR本征活性.同时,富碳本征空位的存在增强了Pt NDs在碳载体上的结合能,使Pt NDs不易在电势循环过程中脱离碳载体,从而增强了稳定性.综上所述,本文通过Pt NDs与碳本征空位工程协同效应策略,精准调控碳负载Pt基催化剂的结构,大幅提升其在酸性条件下的ORR性能,为进一步设计高性能的ORR电催化剂提供了新思路.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
文摘Objective: To analyze the correlation between visceral fat area and insulin resistance index (HOMA-IR) in patients with type 2 diabetes mellitus (T2DM) and abdominal obesity and to provide a reference for screening and related research of such patients. Methods: Two hundred patients with T2DM admitted to Guandu People’s Hospital of Kunming were included. The study was carried out from October 2022 to December 2023. The patients were divided into three groups according to different abdominal visceral fat areas (VFA): Group A (n = 65) was less than 75cm2, Group B (n = 75) was 75-100 cm2, and Group C (n = 60) was greater than 100 cm2. The subjects in the three groups were all tested for glycated hemoglobin (HbA1c), fasting insulin (FINS), and fasting blood glucose (FPG). Height and weight were measured to calculate body mass index (BMI). The HOMA-IR and TYG (fasting triglyceride and glycemic index) were also calculated. Changes in the BMI, VFA, HOMA-IR, and TYG levels were observed in the three groups. Results: The VFA, BMI, HbA1c, FPG, FINS, HOMA-IR, and TYG of the patients all increased, with a more significant increase in the BMI, FINS, HOMA-IR, and TYG levels (P < 0.01). Multiple linear stepwise regression analyses used visceral fat area (VFA) as the dependent variable. The results showed that VFA was closely related to BMI, FINS, HOMA-IR, and TYG. Conclusion: Early reduction of VFA to reduce insulin resistance may be a better treatment and effective method for T2DM, providing powerful measures and new strategies for effective blood sugar control and early prevention in the treatment of metabolic diseases.
基金support from the Natural Science Foundation of China(no.22005071)the Natural Science Special(Special Post)Research Foundation of Guizhou University(no.2020-13)The cultivation programs Research Foundation of Guizhou University(no.2019-64).
文摘All inorganic CsPbI_(3)perovskite solar cells(PSCs)have emerged as disruptive photovoltaic technology owing to their admirable photoelectric properties and the non-volatile active layer.However,the phase instability against moisture severely limits the fabrication environment for the high-efficiency devices,breaking through the confinement region to achieve scalable manufacturing has been the primary issue for future commercialization.Here,we develop a curing-anti-solvent strategy for fabricating high-quality and stable black-phase CsPbI_(3)perovskite films in ambient air by introducing an inorganic polymer perhydropolysilazane(PHPS)into methyl acetate to form anti-template agent.The cross-linked PHPS reduces moisture erosions while the hydrolyzate silanol network(–Si(OH)_(4)^(–))controls the perovskite crystal growth by forming Lewis adducts with PbI_(2)during the fabrication.The polycondensation adduct of Si–O–Si/Si–O–Pb strongly binds to CsPbI_(3)grains as a shield layer to hamper phase transition.Using the inorganic CsPbI_(3)perovskite thin-film with PHPS-modified anti-solvent processing as the light absorber,the n–i–p planar solar cell achieved an efficiency of 19.17%under standard illumination test conditions.More importantly,the devices showed excellent moisture stability,retaining about 90%of the initial efficiency after 1000 h under 30%RH.
基金supported by the National Natural Science Foundation of China (31871982, 31672042)the National Key Research and Development Program of China (2016YFD0200805)the Jiangsu Agricultural Science and Technology Innovation Fund (CX (18)3056)。
文摘Barnyardgrass (Echinochloa spp.) is the most common noxious weed in rice paddies as it inhibits rice growth and reduces grain yield.To date,little information is available on above-and belowgroundgrowth changes in rice due to neighboring barnyardgrass.This study aimed to investigate the changes in root traits and shoot growth of rice when it is grown with different kinds of barnyardgrass.Japonica rice plants (var.Nanjing 9108) were co-cultured with two varieties of Echinochloa crusgalli (L.) Beauv.(EP,var.mitis (pursh) Petern;EH,var.zelayensis (H.B.K.) Hitchc),and E.colonum (L.) Link (EL) in the field in 2017 and 2018.Four treatments included control (i.e.,weed free rice plants) and co-cultures with each of three barnyardgrasses (EP,EH,and EL).The results revealed that EP,EH,and EL treatments significantly reduced rice grain yields by 30.6%–36.2%,42.5%–46.5%,and 10.6%–14.3%,respectively.Shoot growth including shoot dry weight,leaf photosynthetic rate,zeatin (Z) and zeatin riboside (ZR) in grains,and activities of key enzymes involved in sucrose-to-starch conversion in grains and root traits,such as length density,root dry weight,total absorbing surface area,active absorption surface area,oxidation activity,and Z+ZR contents in roots were dramatically reduced during post-heading stages of rice when grown with the three kinds of barnyardgrass.Moreover,above-mentioned rice shoot growth indices were strongly and positively correlated with root traits.These results suggested the decrease in rice shoot growth and root traits during post-heading stages contributes to the reduction in the rice yield when it grows with barnyardgrass neighbors.
基金supported by the Platform of Science and Technology and Talent Team Plan of Guizhou province(No.GCC[2023]007)the Doctorial Start-up Fund of Guizhou University(No.2011-05)+3 种基金the Fok Ying Tung Education Foundation(No.171095)the Talent Project of Guizhou Provincial Education Department(No.2022-094)the Guizhou Provincial Science and Technology Projects(No.ZK 2022-General 044)the National Natural Science Foundation of China(No.11964006).
文摘To adapt the practical demand,designing and constructing the multifunctional microwave absorbers(MAs)is the key future direction of research and development.However,effective integrating the multiple functions into a single material remains a huge challenge.Herein,cellular carbon foams(CCFs)with different porous structures were elaborately designed and fabricated in high efficiency through a facile continuous freeze-drying and carbonization processes using a sustainable biomass chitosan as the precursor.The obtained results revealed that the thermal treated temperature and g-C_(3)N_(4) amount played a great impact on the carbonization degrees,pore sizes,and morphologies of CCFs,which led to their tunable electromagnetic(EM)parameters,improved conduction loss,and polarization loss abilities.Owing to the special cellular structure,the designed CCFs samples simultaneously displayed the strong absorption capabilities,broad absorption bandwidths,and thin matching thicknesses.Meanwhile,the as-prepared CCFs exhibited the strong hydrophobicity and good thermal insulation,endowing its attractive functions of self-cleaning and thermal insulation.Therefore,our findings not only presented a facile approach to produce different porous structures of CCFs,but also provided an effective strategy to develop multifunctional high-performance MAs on basis of three-dimensional CCFs.
基金This work was financially supported by the National Natural Science Foundation of China(No.52205593)the Fund of Natural Science Special(Special Post)Research Foundation of Guizhou University(No.2023-032)the Platform of Science and Technology and Talent Team Plan of Guizhou Province(No.GCC[2023]007).
文摘CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric response of GRCB/CCTO ternary metacomposites were systematically investigated.The weakly real permittivity(ε′)-negative response(ε′~−1×10^(2))was achieved which originated from weakly low-frequency plasmonic state of free carriers within constructed GRCB networks.With enhancing three-dimensional GRCB network,the plasma frequency of metacomposites increased while the damping factor decreased.Herein,theε′-negative values of metacomposites were tuned from−10^(2) to−10^(4) orders of magnitude andε′-near-zero(ENZ)frequencies from~142 to~340 MHz which substantially benefited from the moderate carrier concentration of GRCB dual fillers.The Drude model and equivalent circuit models were adopted to demonstrate dielectric and electrical characteristics.The obtained metacomposites show strong EM shielding effect along with enhanced plasmonic oscillation and even better achieving perfect EM shielding effect in ENZ media.This work achieves the tunableε′-negative andε′-near-zero response and more importantly clarifies its regulation mechanism in ceramic-based ternary metacomposites,which opens up the possibility of designing high-performance EM shielding materials based on metacomposites.
基金supported by the Fund of Fok Ying Tung Education Foundation,the Major Research Project of innovative Group of Guizhou province(No.2018-013)the National Science Foundation of China(Nos.11604060 and 11964006)the Foundation of the National Key Project for Basic Research(No.2012CB932304).
文摘Impedance matching characteristics and loss capabilities including magnetic loss,polarization loss and conduction loss are critical factors to improve microwave absorption performances(MAPs).To elevate these aspects,herein,yolk-shell structured CoNi@Air@C/SiO_(2)@Polypyrrole(PPy)magnetic multicomponent nanocubes(MCNCs)were designed and successfully fabricated in high efficiency through a continuous co-precipitation route,classical Stöber method,thermal treatment and polymerization reaction.The obtained results indicated that the formation of SiO_(2) effectively stabilized the cubic geometrical morphology and yolk-shell structure during the high-temperature pyrolysis process.The introduction of PPy greatly boosted their polarization loss and conductive loss capabilities.Therefore,the as-prepared yolkshell structured CoNi@Air@C/SiO_(2)@PPy MCNCs presented superior MAPs compared to CoNi@Air@C/SiO_(2) MCNCs.Furthermore,by regulating the content of PPy,the obtained CoNi@Air@C/SiO_(2)@PPy MCNCs displayed tunable and excellent comprehensive MAPs in terms of strong absorption capabilities,broad frequency bandwidths and thin matching thicknesses,which could be ascribed to the unique structure and excellent magnetic-dielectric synergistic effect.Therefore,our findings provided an alternative pathway to effectively utilize the magnetic-dielectric synergy and loss capabilities for the developing yolk-shell structured magnetic MCNCs as the strong wideband microwave absorbers.
基金This work was supported by the Fund of Fok Ying Tung Edu-cation Foundation,the Major Research Project of Innovative Group of Guizhou province(No.2018-013)Open Fund from Henan Uni-versity of Science and Technology,the National Science Foundation of China(Nos.11964006 and 11774156)the Foundation of the National Key Project for Basic Research(No.2012CB932304)for fi-nancial support。
文摘Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategies,in this study,M Fe_(2)O_(4)and flower-like core@shell M Fe_(2)O_(4)@MoS_(2)(M=Mn,Ni,and Zn)sam-ples with different categories were elaborately designed and selectively produced in large scale through a simple two-step hydrothermal reaction.We conducted the systematical investigation on their microstruc-tures,electromagnetic parameters and microwave absorption performances(MAPs).The obtained results revealed that the large radius of M^(2+)cation could effectively boost the concentration of oxygen vacancy in the M Fe_(2)O_(4)and M Fe_(2)O_(4)@MoS_(2)samples,which resulted in the improvement of dielectric loss capabil-ities and MAPs.Furthermore,the introduction of MoS_(2)nanosheets greatly improved the interfacial effect and enhanced the polarization loss capabilities,which also boosted the MAPs.By taking full advantage of the defect and interface,the designed M Fe_(2)O_(4)@MoS_(2)samples displayed tunable and excellent com-prehensive MAPs including strong absorption capability,wide absorption bandwidth and thin matching thicknesses.Therefore,the clear understanding of defect and interface engineering made these strategies well elaborately designed and applicable to improving MAPs.
基金financially supported by the Doctorial Start-up Fund of Guizhou University(No.2011-05)the Fund of Fok Ying Tung Education Foundation,the Major Research Project of innovative Group of Guizhou province(No.2018-013)+1 种基金the Guizhou Provincial Science and Technology Projects(No.ZK 2022-General 044)the National Science Foundation of China(Nos.11604060 and 11964006).
文摘Due to the good manipulation of electronic structure and defect,anion regulating should be a promising strategy to regulate the electromagnetic(EM)parameters and optimize the EM wave absorption performances(EMWAPs).In this work,we proposed a facile route for the large-scale production of core@shell structured hollow carbon spheres@MoSxSe_(2−x)(x=0.2,0.6,and 1.0)multicomponent nanocomposites(MCNCs)through a mild template method followed by hydrothermal process.The obtained results revealed that the designed hollow carbon spheres@MoSxSe_(2−x)MCNCs presented the improved sulfur vacancy concentration by regulating the x value from 0.2 to 1.0.The obtained hollow carbon spheres@MoSxSe_(2−x)MCNCs displayed the extraordinary comprehensive EMWAPs because of the introduced abundant defects and excellent interfacial effects.Furthermore,the as-prepared hollow carbon spheres@MoSxSe_(2−x)MCNCs presented the progressively improved comprehensive EMWAPs with the x value increasing from 0.2 to 1.0,which could be explained by their boosted polarization loss abilities and impedance matching characteristics originating from the enhanced sulfur vacancy concentration.Therefore,our findings not only demonstrated that the anion regulating was a promising method to optimize EM parameters and EMWAPs,but also provided a facile route to design the transition metal dichalcogenides-based MCNCs as the much more attractive candidates for highperformance microwave absorbers.
基金financially supported by the National Natural Science Foundation of China (Nos.52101176,11604060,22005071 and 52101010)the China Postdoctoral Science Foundation (No.2020M671992)+3 种基金Guangdong Basic and Applied Basic Research Foundation (No.2021A1515110883)Guizhou Provincial Science and Technology Projects (No.ZK[2022]General044)the Cultivation Programs Research Foundation of Guizhou University (No.2019-64)support of the Fund of Natural Science Special (Special Post)Research Foundation of Guizhou University[Grant No.2023-032]。
文摘Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(12)(CNT-CB/CCTO)ternary metacomposites were fabricated by spark plasma sintering.The CNT-CB dualphase filler was pre-pared through electrostatic selfassembly process in order to construct an effective 3-dimensional(3D)carbon network in CCTO matrix.The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt%which accompanied with an essential change of conduction mechanism.The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network,described by Drude model.The problem of heat transport,generally occurring in negative permittivity materials,has been solved and optimized in obtained ternary metacomposites beneftting from the substantially high thermal conductivity(9.49-2.00 W·m^(-1)·K^(-1))and diffusivity(2.74-1.22mm^(2)·s^(-1)).This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus.
基金This work was supported by National Natural Science Foundation of China (31200615, 31600238), Postgraduate Research and Innovation Project of Hunan Province (CX2014B302), National Key Laboratory Cultivation Base Construction Project (15KFXM09), the National Science-Technology Support Plan Projects of China (2012BAI29B04), The talent introduction Science Foundation of Hunan Agricultural University (13YJ09), and the Natural Science Foundation of Hunan Province (2016JJ4040).
文摘The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe resource for the manufacture of antimicrobial feed additive for livestock. The active constituents from M. cordata are known to include benzylisoquinoline alkaloids (BIAs) such as sanguinarine (SAN) and chelerythrine (CHE), but their metabolic pathways have yet to be studied in this non-model plant. The active biosynthesis of SAN and CHE in M. cordata was first examined and confirmed by feeding ^13C-labeled tyrosine. To gain further insights, we de novo sequenced the whole genome of M. cordata, the first to be sequenced from the Papaveraceae family. The M. cordata genome covering 378 Mb encodes 22,328 predicted protein-coding genes with 43.5% being transposable elements. As a member of basal eudicot, M. cordata genome lacks the paleohexaploidy event that occurred in almost all eudicots. From the genomics data, a complete set of 16 metabolic genes for SAN and CHE biosynthesis was retrieved, and 14 of their biochemical activities were validated. These genomics and metabolic data show the conserved BIA metabolic pathways in M. cordata and provide the knowledge foundation for future productions of SAN and CHE by crop improvement or microbial pathway reconstruction.
基金supported by the Fund of Fok Ying Tung Education Foundation,the Natural Science Foundation of Guizhou province(No.2017-1034)the Major Research Project of innovative Group of Guizhou province(No.2018-013)+1 种基金the National Natural Science Foundation of China(Nos.11604060,52101010 and 11964006)the Foundation of the National Key Project for Basic Research(No.2012CB932304)for financial support.
文摘In order to effectively utilize the magnetic-dielectric synergy and interfacial engineering,in this paper,yolk–shell structured magnetic multicomponent nanocomposites(MCNCs)including CoNi@void@C and CoNi@void@C@MoS_(2) were produced in large scale by in-situ pyrolysis of cubic CoNi Prussian blue analogs(PBAs)followed by the hydrothermal process,respectively.Because of their unique structures,excellent synergistic effect between dielectric and magnetic loss,the as-prepared CoNi@void@C and CoNi@void@C@MoS_(2) MCNCs displayed very outstanding electromagnetic wave absorption performances(EMWAPs)including strong absorption capabilities,broad absorption bandwidth and thin matching thicknesses.Furthermore,the as-prepared CoNi@void@C and CoNi@void@C@MoS_(2) MCNCs well maintained the cubic configuration of CoNi PBAs even after the thermal treatment and hydrothermal processes.The unique structure and formed carbon layers effectively prevented the corrosion of internal CoNi alloy during the formation of MoS_(2),and CoNi@void@C@MoS_(2) MCNCs with different MoS_(2) contents could be synthesized by controlling the hydrothermal temperature.The obtained results revealed that the EM parameters,dielectric and magnetic loss capabilities of CoNi@void@C@MoS_(2) MCNCs could be tuned by controlling hydrothermal temperature and filler loading,which made their outstanding EMWAPs could be achieved in different frequency regions.Taking account of simple process,low density and high chemical stability,our findings provided a new and effective pathway to develop the strong wideband microwave absorbers.
基金financially supported by the Fund of Fok Ying Tung Education Foundationthe Major Research Project of innovative Group of Guizhou province(2018–013)+2 种基金the Open Fund from Henan University of Science and Technologythe National Science Foundation of China(Nos.11964006 and 11774156)the Foundation of the National Key Project for Basic Research(No.2012CB932304)。
文摘In this work,we put forward a scheme to exquisitely design and selectively synthesize the core@shell structured MSe_(2)/FeSe_(2)@MoSe_(2)(M=Co,Ni)flower-like multicomponent nanocomposites(MCNCs)through a simple two-step hydrothermal reaction on the surfaces of MFe_(2)O_4 nanospheres with the certain amounts of Mo and Se sources.With increasing the amounts of Mo and Se sources,the obtained core@shell structured MSe_(2)/FeSe_(2)@MoSe_(2)(M=Co,Ni)MCNCs with the enhanced content of MoSe_(2)and improved flower-like geometry morphology could be produced on a large scale.The obtained results revealed that the as-prepared samples displayed improved comprehensive microwave absorption properties(CMAPs)with the increased amounts of Mo and Se sources.The as-prepared CoSe_(2)/FeSe_(2)@MoSe_(2)and NiSe_(2)/FeSe_(2)@MoSe_(2)MCNCs with the well-defined flower-like morphology could simultaneously present the outstanding CMAPs in terms of strong absorption capability,wide absorption bandwidth,and thin matching thicknesses,which mainly originated from the conduction loss and flower-like geometry morphology.Therefore,the findings not only develop the very desirable candidates for high-performance microwave absorption materials but also pave a new way for optimizing the CMAPs through tailoring morphology engineering.
基金financially supported in part by the National Natural Science Foundation of China(9143511 and 31901899)Zhejiang Natural Science Foundation(LZ17C130001)the Fundamental Research Funds for the Central Universities(2020XZZX001).
文摘The hexaploid species Echinochloa crus-galli is one of the most detrimental weeds in crop fields,especially in rice paddies.Its evolutionary history is similar to that of bread wheat,arising through polyploidization after hybridization between a tetraploid and a diploid species.In this study,we generated and analyzed high-quality genome sequences of diploid(E.haploclada),tetraploid(E.oryzicola),and hexaploid(E.crus-galli)Echinochloa species.Gene family analysis showed a significant loss of disease-resistance genes such as those encoding NB-ARC domain-containing proteins during Echinochloa polyploidization,contrary to their significant expansionduring wheat polyploidization,suggesting that natural selection might favor reduced investment in resistance in this weed to maximize its growth and reproduction.In contrast to the asymmetric patterns of genome evolution observed in wheat and other crops,no significant differences in selection pressure were detected between the subgenomes in E.oryzicola and E.crus-galli.In addition,distinctive differences in subgenome transcriptome dynamics during hexaploidization were observed between E.crus-galli and bread wheat.Collectively,our study documents genomic mechanisms underlying the adaptation of a major agricultural weed during polyploidization.The genomic and transcriptomic resources of three Echinochloa species and new insights into the polyploidization-driven adaptive evolution would be useful for future breeding cereal crops.
基金the Fund of Fok Ying Tung Education Foundation,the Natural Science Foundation of Guizhou province(No.2017-1034)the Major Research Project of innovative Group of Guizhou province(No.2018-013)+1 种基金the Natural National Science Foundation of China(Nos.11604060,52101010,and 11964006)the Foundation of the National Key Project for Basic Research(No.2012CB932304)for financial support.
文摘Defect and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials.In order to effectively utilize these strategies for the improvement of microwave absorption properties(MAPs),in this study,we reported the synthesis of hollow carbon shells and hollow carbon@MoS_(2)nanocomposites by the template-etching and templateetching-hydrothermal methods,respectively.The obtained results indicated that the degree of defect for hollow carbon shells and hollow carbon@MoS_(2)could be modulated by the thickness of hollow carbon shell,which effectively fulfilled the optimization of electromagnetic parameters and improvement of MAPs.Furthermore,the microstructure investigations revealed that the precursor of hollow carbon shells was encapsulated by the sheet-like MoS_(2)in high efficiency.And the introduction of MoS_(2)nanosheets acting as the shell effectively improved the interfacial effects and boosted the polarization loss capabilities,which resulted in the improvement of comprehensive MAPs.The elaborately designed hollow carbon@MoS_(2)samples displayed very outstanding MAPs including strong absorption capabilities,broad absorption bandwidth,and thin matching thicknesses.Therefore,this work provided a viable strategy to improve the MAPs of microwave absorbers by taking full advantage of their defect and interface engineering.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 41801378,42071382].
文摘High-Speed Rail(HSR)has increasingly become an important mode of inter-city transportation between large cities.Inter-city interaction facilitated by HSR tends to play a more prominent role in promoting urban and regional economic integration and development.Quantifying the impact of HSR’s interaction on cities and people is therefore crucial for long-term urban and regional development planning and policy making.We develop an evaluation framework using toponym information from social media as a proxy to estimate the dynamics of such impact.This paper adopts two types of spatial information:toponyms from social media posts,and the geographical location information embedded in social media posts.The framework highlights the asymmetric nature of social interaction among cities,and proposes a series of metrics to quantify such impact from multiple perspectives-including interaction strength,spatial decay,and channel effect.The results show that HSRs not only greatly expand the uneven distribution of inter-city connections,but also significantly reshape the interactions that occur along HSR routes through the channel effect.