A 25kW interior permanent magnet synchronous machine(IPMSM)applied to the electric vehicle is introduced in the paper.A lumped-parameter thermal network model is presented for IPMSM temperature rise calculation.Furthe...A 25kW interior permanent magnet synchronous machine(IPMSM)applied to the electric vehicle is introduced in the paper.A lumped-parameter thermal network model is presented for IPMSM temperature rise calculation.Furthermore,a 3D liquid-solid coupling model considering the assembly clearance is compared with the 2D lumped-parameter thermal network model.Finally,a dynamometer platform for temperature rise measurement is established to verify the above-mentioned methods,which obtains the measured efficiency map at rated load case and overload case.At the same time,the measured no-load back electromotive Force(EMF),load line input voltage and load current are gathered.Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core,and the FLUKE infrared thermal imager is applied to measure the surface temperature of PMSM and controller.Testing result shows that the lumped-parameter thermal network have a high accuracy to predict each part temperature.展开更多
The electromagnetic vibration noise in axial flux motors was meticulously examined.In this study,24-slot/10-pole and 12-slot/10-pole axial flux motors were chosen as the subjects of research.The spatial characteristic...The electromagnetic vibration noise in axial flux motors was meticulously examined.In this study,24-slot/10-pole and 12-slot/10-pole axial flux motors were chosen as the subjects of research.The spatial characteristics of the axial electromagnetic force were derived analytically and confirmed via two-dimensional Fourier decomposition.The finite-element method was used to simulate the low-order axial modes of both motors.Furthermore,a modal experiment on the stator of a 24-slot/10-pole axial flux motor was conducted to validate the simulation’s accuracy.By integrating the electromagnetic and structural models,a comprehensive multi-physical field model was developed to calculate the vibration noise of the axial flux motor.The precision of this model was subsequently corroborated with noise experiments.The findings from this study aim to offer insights into identifying the sources of vibration noise in axial flux motors.展开更多
文摘A 25kW interior permanent magnet synchronous machine(IPMSM)applied to the electric vehicle is introduced in the paper.A lumped-parameter thermal network model is presented for IPMSM temperature rise calculation.Furthermore,a 3D liquid-solid coupling model considering the assembly clearance is compared with the 2D lumped-parameter thermal network model.Finally,a dynamometer platform for temperature rise measurement is established to verify the above-mentioned methods,which obtains the measured efficiency map at rated load case and overload case.At the same time,the measured no-load back electromotive Force(EMF),load line input voltage and load current are gathered.Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core,and the FLUKE infrared thermal imager is applied to measure the surface temperature of PMSM and controller.Testing result shows that the lumped-parameter thermal network have a high accuracy to predict each part temperature.
基金Supported by the Key Project of the China National Natural Science Foundation under Projects 51637001Open Fund for National Engineering Laboratory of Energy-Saving Motor&Control Technology,Anhui University(KFKT202101)Scientific Research Project Supported by Education Department of Anhui Province(KJ2021A0014).
文摘The electromagnetic vibration noise in axial flux motors was meticulously examined.In this study,24-slot/10-pole and 12-slot/10-pole axial flux motors were chosen as the subjects of research.The spatial characteristics of the axial electromagnetic force were derived analytically and confirmed via two-dimensional Fourier decomposition.The finite-element method was used to simulate the low-order axial modes of both motors.Furthermore,a modal experiment on the stator of a 24-slot/10-pole axial flux motor was conducted to validate the simulation’s accuracy.By integrating the electromagnetic and structural models,a comprehensive multi-physical field model was developed to calculate the vibration noise of the axial flux motor.The precision of this model was subsequently corroborated with noise experiments.The findings from this study aim to offer insights into identifying the sources of vibration noise in axial flux motors.