Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-c...Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-containing amino acids,DNA,RNA,and other biomolecules damaging to human health.Thus,developing a novel tool for monitoring and imaging of Pd(0)in vivo is very urgent.In the work,based on a intramolecular charge transfer(ICT)mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0).In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0)in 30 min in the aqueous solution with a detection limit of 16 nmol/L.It also showed the outstanding selectivity and antijamming performance.More importantly,NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0)in living cells and mice.展开更多
基金the National Science Foundation of China(Nos.21421005,21576037 and U1608222)。
文摘Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-containing amino acids,DNA,RNA,and other biomolecules damaging to human health.Thus,developing a novel tool for monitoring and imaging of Pd(0)in vivo is very urgent.In the work,based on a intramolecular charge transfer(ICT)mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0).In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0)in 30 min in the aqueous solution with a detection limit of 16 nmol/L.It also showed the outstanding selectivity and antijamming performance.More importantly,NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0)in living cells and mice.