The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate ...The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate their useless components(mainly the degraded solid electrolyte interphase,SEI)and reconstruct their damaged structure.Herein,a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes.The regenerated graphite,which is revitalized by calcination treatment and acid leaching,delivers superb rate performance and a high specific capacity of 370 mAh g^(-1)(~99% of its theoretical capacity)after 100 cycles at 0.1 C,superior to the commercial graphite anodes.The improved electrochemical performance could be attributed to unchoked Li^(+) transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite.This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual“impurity”and provides a facile method for the efficient regeneration of graphite anodes.展开更多
BACKGROUND Colorectal cancer is the third most prevalent malignancy globally and ranks second in cancer-related mortality,with the liver being the primary organ of metastasis.Preoperative chemotherapy is widely recomm...BACKGROUND Colorectal cancer is the third most prevalent malignancy globally and ranks second in cancer-related mortality,with the liver being the primary organ of metastasis.Preoperative chemotherapy is widely recommended for initially or potentially resectable colorectal liver metastases(CRLMs).Tumour pathological response serves as the most important and intuitive indicator for assessing the efficacy of chemotherapy.However,the postoperative pathological results reveal that a considerable number of patients exhibit a poor response to preoperative chemotherapy.Body mass index(BMI)is one of the factors affecting the tumori-genesis and progression of colorectal cancer as well as prognosis after various antitumour therapies.Several studies have indicated that overweight and obese patients with metastatic colorectal cancer experience worse prognoses than those with normal weight,particularly when receiving first-line chemotherapy regimens in combination with bevacizumab.AIM To explore the predictive value of BMI regarding the pathologic response following preoperative chemotherapy for CRLMs.METHODS A retrospective analysis was performed in 126 consecutive patients with CRLM who underwent hepatectomy following preoperative chemotherapy at four different hospitals from October 2019 to July 2023.Univariate and multivariate logistic regression models were applied to analyse potential predictors of tumour pathological response.The Kaplan-Meier method with log rank test was used to compare progression-free survival(PFS)between patients with high and low BMI.BMI<24.0 kg/m^(2) was defined as low BMI,and tumour regression grade 1-2 was defined as complete tumour response.RESULTS Low BMI was observed in 74(58.7%)patients and complete tumour response was found in 27(21.4%)patients.The rate of complete tumour response was significantly higher in patients with low BMI(29.7%vs 9.6%,P=0.007).Multivariate analysis revealed that low BMI[odds ratio(OR)=4.56,95%confidence interval(CI):1.42-14.63,P=0.011],targeted therapy with bevacizumab(OR=3.02,95%CI:1.10-8.33,P=0.033),preoperative carcinoembryonic antigen level<10 ng/mL(OR=3.84,95%CI:1.19-12.44,P=0.025)and severe sinusoidal dilatation(OR=0.17,95%CI:0.03-0.90,P=0.037)were independent predictive factors for complete tumour response.The low BMI group exhibited a significantly longer median PFS than the high BMI group(10.7 mo vs 4.7 mo,P=0.011).CONCLUSION In CRLM patients receiving preoperative chemotherapy,a low BMI may be associated with better tumour response and longer PFS.展开更多
Carotenoids directly influence citrus fruit color and nutritional value,which is critical to consumer acceptance.Elucidating the potential molecular mechanism underlying carotenoid metabolism is of great importance fo...Carotenoids directly influence citrus fruit color and nutritional value,which is critical to consumer acceptance.Elucidating the potential molecular mechanism underlying carotenoid metabolism is of great importance for improving fruit quality.Despite the well-established carotenoid biosynthetic pathways,the molecular regulatory mechanism underlying carotenoid metabolism remains poorly understood.Our previous studies have reported that the Myc-type basic helix-loop-helix(bHLH)transcription factor(TF)regulates citrus proanthocyanidin biosynthesis.Transgenic analyses further showed that overexpression of CsTT8 could significantly promote carotenoid accumulation in transgenic citrus calli,but its regulatory mechanism is still unclear.In the present study,we found that overexpression of CsTT8 enhances carotenoid content in citrus fruit and calli by increasing the expression of CsDXR,CsHDS,CsHDR,CsPDS,CsLCYE,CsZEP,and CsNCED2,which was accompanied by changes in the contents of abscisic acid and gibberellin.The in vitro and in vivo assays indicated that CsTT8 directly bound to the promoters of CsDXR,CsHDS,and CsHDR,the keymetabolic enzymes of the methylerythritol 4-phosphate(MEP)pathway,thus providing precursors for carotenoid biosynthesis and transcriptionally activating the expression of these three genes.In addition,CsTT8 activated the promoters of four key carotenoid biosynthesis pathway genes,CsPDS,CsLCYE,CsZEP,and CsNCED2,directly promoting carotenoid biosynthesis.This study reveals a novel network of carotenoid metabolism regulated by CsTT8.Our findings will contribute to manipulating carotenoid metabolic engineering to improve the quality of citrus fruit and other crops.展开更多
Abstract As an essential horticultural crop,Citrus has carotenoid diversity,which affects its aesthetic and nutritional values.β,β-Xanthophylls are the primary carotenoids accumulated in citrus fruits,and non-heme d...Abstract As an essential horticultural crop,Citrus has carotenoid diversity,which affects its aesthetic and nutritional values.β,β-Xanthophylls are the primary carotenoids accumulated in citrus fruits,and non-heme di-iron carotene hydroxylase(BCH)enzymes are mainly responsible forβ,β-xanthophyll synthesis.Previous studies have focused on the hydroxylation of BCH1,but the role of its paralogous gene in citrus,BCH2,remains largely unknown.In this study,we revealed theβ-hydroxylation activity of citrus BCH2(CsBCH2)for the first time through the functional complementation assay using Escherichia coli,although CsBCH2 exhibited a lower activity in hydroxylatingβ-carotene intoβ-cryptoxanthin than citrus BCH1(CsBCH1).Our results showed that overexpression of CsBCH2 in citrus callus increased xanthophyll proportion and plastoglobule size with feedback regulation of carotenogenic gene expression.This study revealed the distinct expression patterns and functional characteristics of two paralogous genes,CsBCH1 and CsBCH2,and illustrated the backup compensatory role of CsBCH2 for CsBCH1 in citrus xanthophyll biosynthesis.The independent function of CsBCH2 and its cooperative function with CsBCH1 inβ-cryptoxanthin biosynthesis suggested the potential of CsBCH2 to be employed for expanding the synthetic biology toolkit in carotenoid engineering。展开更多
AIM: To investigate the feasibility of treatment for upper gastrointestinal fistula and leakage with personal stage nutrition support. METHODS: Forty-three patients with upper gastrointestinal fistula and leakage we...AIM: To investigate the feasibility of treatment for upper gastrointestinal fistula and leakage with personal stage nutrition support. METHODS: Forty-three patients with upper gastrointestinal fistula and leakage were randomly divided into two groups. Patients in group A were treated with personal stage nutrition support and patients in group B were treated with total parental nutrition (TPN) in combination with operation. Nutritional states of the candidates were evaluated by detecting albumin (AIb) and pre-AIb. The balance between nutrition and hepatic function was evaluated by measurement of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (Tbill) before and after operation. At the same time their complications and hospitalized time were surveyed. RESULTS: Personal stage nutrition support improved upper gastrointestinal fistula and leakage. The nutrition state and hepatic function were better in patients who received personal stage nutrition support than in those who did not receive TPN. There was no significant difference in the complication and hospitalized time in the two groups of patients. CONCLUSION: Upper gastrointestinal fistula and leakage can be treated with personal stage nutrition support which is more beneficial for the post-operation recovery and more economic than surgical operation.展开更多
BACKGROUND In atrophic posterior mandibular areas,where the bone height superior to the inferior alveolar nerve(IAN)is less than 6 mm,short implants are not applicable.Conventional alternatives such as IAN transpositi...BACKGROUND In atrophic posterior mandibular areas,where the bone height superior to the inferior alveolar nerve(IAN)is less than 6 mm,short implants are not applicable.Conventional alternatives such as IAN transposition and various alveolar bone augmentation approaches are technically demanding and prone to complications.CASE SUMMARY Computer-guided dynamic navigation implantation improves the accuracy,predictability,and safety of implant placement.This case report presents a dynamic navigation system-guided trans-IAN implant placement technique,which can successfully treat a posterior mandibular dentition defect when the bone height is only 4.5 mm.The implant was inserted into the buccal side of the IAN and was 1.7 mm away from the IAN.The implantation deviations were controlled within a satisfying range,and the long-term restoration outcome was stable.CONCLUSION Dynamic navigation system-guided trans-IAN implant placement might be a recommended technique for patients with extremely insufficient residual bone height and sufficient bone width in the posterior mandibular area.展开更多
We studied the near-field properties of localized surface plasmon resonances in finite linear gold nanochains using photoemission electron microscopy(PEEM).The localization of the electromagnetic field in the near-fie...We studied the near-field properties of localized surface plasmon resonances in finite linear gold nanochains using photoemission electron microscopy(PEEM).The localization of the electromagnetic field in the near-field region was mapped at high spatial resolution.By tuning the excitation laser wavelength,we can obtain the near-field spectra,from which the energy splitting between longitudinal(L)and transverse(T)plasmon modes can be revealed.In particular,the L-mode red shifts and the T-mode blue shifts with increasing chain length.The red shift of the L-mode is highly dependent on the gap distance.In contrast,the T-mode almost remains constant within the range of gap distance we investigated.This energy splitting between the L-mode and the T-mode of metallic chains is in agreement with previous far-field measurements,where it was explained by dipole-dipole near-field coupling.Here,we provide direct proof of this near-field plasmon coupling in nanochains via the above-described near-field measurements using PEEM.In addition,we explore the energy transport along the gold nanochains under excitation at oblique illumination via PEEM measurements together with numerical simulations.展开更多
Lithium-selenium(Li-Se) battery is a promising system with high theoretical gravimetric and volumetric energy densities, while its long-term cyclability is hard to realize, especially when a practical Se cathode with ...Lithium-selenium(Li-Se) battery is a promising system with high theoretical gravimetric and volumetric energy densities, while its long-term cyclability is hard to realize, especially when a practical Se cathode with high Se content, high Se loading, and high density is employed. The main obstacles are the sluggish conversion kinetics of the dense Se cathodes and the continuous deterioration of the Li-metal anodes.Here, by introducing an acetonitrile(AN)-based electrolyte and replacing the Li electrode with a lithiated graphite, we successfully build a hybrid conversion-intercalation system using a high-content(80 wt%),decent-loading(3.0 mg cm^(-2)), and low-porosity(44%) Se cathode. The as-designed lithiated graphite||Se(LG||Se) cell demonstrated a high Se utilization(97.4%), a long cycle life(3000 cycles), and an ultrahigh average Coulombic efficiency(99.98%). The cell also works well under lean-electrolyte(2 l L mg^(-1)) condition and shows outstanding safety performance in the nail-penetrating test. The combination affords the competitive comprehensive performances, including high volumetric and gravimetric energy densities, long cycling life, and superb safety of the LG||Se cell. In addition, with a newly-designed threeelectrode pouch cell, the lithiation of the graphite anodes could be done with an in-situ lithiation process,indicating the high potential of the as-proposed LG||Se cell for the practical applications.展开更多
Cotton architecture is partly determined by shoot branching and flowering patterns.Gh BRC1 was previously identified by RNA-seq analysis of nulliplex-branching and normal-branching cotton.However,the roles of Gh BRC1 ...Cotton architecture is partly determined by shoot branching and flowering patterns.Gh BRC1 was previously identified by RNA-seq analysis of nulliplex-branching and normal-branching cotton.However,the roles of Gh BRC1 in cotton remain unclear.In the present study,investigations of nuclear localization and transcriptional activity indicated that Gh BRC1 has characteristics typical of transcription factors.Gene expression analysis showed that Gh BRC1 was highly expressed in axillary buds but displayed different expression patterns between the two branching types.Overexpression of Gh BRC1 in Arabidopsis significantly inhibited the number of branches and promoted flowering.In contrast,silencing Gh BRC1 in cotton significantly promoted seedling growth.Gh BRC1 was induced by multiple hormones,including strigolactones,which promoted seedling growth and seed germination of Arabidopsis plants overexpressing Gh BRC1.Consistent with these findings,RNA-seq analysis of virus-induced gene silencing treated cotton revealed that a large number of genes were differentially expressed between Gh BRC1-silenced and control plants,and these genes were significantly enriched in plant hormone signalling pathways.Together,our data indicates that Gh BRC1 regulates plant branching and flowering through multiple regulatory pathways,especially those regulating plant hormones,with functions partly differing from those of Arabidopsis BRC1.These results provide insights into the molecular mechanisms controlling plant architecture,which is important for breeding cotton with ideal plant architecture and high yield.展开更多
An increasing interest in the use of low frequency Synthetic Aperture Radar(SAR)systems,e.g.,L-and P-bands,makes the research of the ionospheric effects on SAR interferograms become urgent and significant.As the most ...An increasing interest in the use of low frequency Synthetic Aperture Radar(SAR)systems,e.g.,L-and P-bands,makes the research of the ionospheric effects on SAR interferograms become urgent and significant.As the most pronounced signature in interferograms,the ionosphere-induced azimuth streak was thoroughly investigated in this study through processing of the 19 L-band Advanced Land-Observing Satellite(ALOS)Phased Array type L-band Synthetic Aperture Radar(PALSAR)images over the Chongqing City,China.The investigations show that the visible ionosphere-induced stripe-shape azimuth shifts with the invariable direction of 26°E,113°N are observed in some interferometric pairs.Relating these anomalous azimuth shifts to the International GNSS Service(IGS)final ionospheric products shows that the detected ionosphere-contaminated SAR images display the relatively large ionospheric variation with time during SAR satellite travelled through the study area,indicating a somewhat correlation between them.After detecting the ionosphere-contaminated interferograms,we estimated the Ionospheric Phase Streak(IPS)based on an approximate linear relationship between IPS and azimuth shift,and then removed them from the original interferograms.The corrected results show that ionospheric phase patterns are largely removed from the ionosphere-contaminated interferograms.The investigation indicates that the direction of the IPS keeps approximately constant in space and time,which provides the potential chance to develop methods to correct the ionospheric effect.Furthermore,this study once more proves that the ionospheric effect on SAR interferogram can be detected,estimated and corrected from azimuth shifts.展开更多
Failure prediction plays an important role for many tasks such as optimal resource management in large-scale system. However, accurately failure number prediction of repairable large-scale long-running computing (RLL...Failure prediction plays an important role for many tasks such as optimal resource management in large-scale system. However, accurately failure number prediction of repairable large-scale long-running computing (RLLC) is a challenge because of the reparability and large-scale. To address the challenge, a general Bayesian serial revision prediction method based on Bootstrap approach and moving average approach is put forward, which can make an accurately prediction for the failure number. To demonstrate the performance gains of our method, extensive experiments on the data of Los Alamos National Laboratory (LANL) cluster is implemented, which is a typical RLLC system. And experimental results show that the prediction accuracy of our method is 80.2 %, and it is a greatly improvement with 4 % compared with some typical methods. Finally, the managerial implications of the models are discussed.展开更多
Chemokine(C-X-C motif)receptor 7(CXCR7),recently termed ACKR3,belongs to the G protein-coupled cell surface receptor family,binds to stromal cellderived factor-1[SDF-1,or chemokine(C-X-C motif)ligand 12]or chemokine(C...Chemokine(C-X-C motif)receptor 7(CXCR7),recently termed ACKR3,belongs to the G protein-coupled cell surface receptor family,binds to stromal cellderived factor-1[SDF-1,or chemokine(C-X-C motif)ligand 12]or chemokine(CX-C motif)ligand 11,and is the most common chemokine receptor expressed in a variety of cancer cells.SDF-1 binds to its receptor chemokine(C-X-C motif)receptor 4(CXCR4)and regulates cell proliferation,survival,angiogenesis and migration.In recent years,another new receptor for SDF-1,CXCR7,has been discovered,and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells.Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells.Unlike CXCR4,CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca^2+release following ligand binding,which is essential for recruiting and activating G proteins.CXCR7 is generally thought to work in three ways:(1)Recruitingβ-arrestin 2;(2)Heterodimerizing with CXCR4;and(3)Acting as a“scavenger”of SDF-1,thus lowering the level of SDF-1 to weaken the activity of CXCR4.In the present review,the expression and role of CXCR7,as well as its prognosis in cancers of the digestive system,were investigated.展开更多
It is important to understand the distribution of sedimentary facies, especially the distribution of sand body that is the key for oil production and exploration. The secondary oil recovery requires analyzing a great ...It is important to understand the distribution of sedimentary facies, especially the distribution of sand body that is the key for oil production and exploration. The secondary oil recovery requires analyzing a great deal of data acc-umulated within decades of oil field development. At many cases sedimentary micro-facies maps need to be reconstru-cted and redrawn frequently, which is time-consuming and heavy. This paper presents an integrated approach for determi-ning the distribution of sedimentary micro-facies, tracing the micro-facies boundary, and drawing the map of sedimentary micro-facies belts automatically by computer technique. The approach is based on the division and correlation of strata of multiple wells as well as analysis of sedimentary facies. The approach includes transform, gridding, interpolation, sup-erposing, searching boundary and drawing the map of sedimentary facies belts, and employs the spatial interpolation me-thod and "worm"interpolation method to determine the distribution of sedimentary micro-facies including sand ribbon and/or sand blanket. The computer software developed on the basis of the above principle provides a tool for quick visu-alization and understanding the distribution of sedimentary micro-facies and reservoir. Satisfied results have been achieve-ed by applying the technique to the Putaohua Oil Field in Songliao Basin, China.展开更多
Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely...Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear.Here,we identified two master regulators of ABA-mediated citrus fruit coloration,CsERF110 and CsERF53,which activate the expression of carotenoid metabolism genes(CsGGPPS,CsPSY,CsPDS,CsCRTISO,CsLCYB2,CsLCYE,CsHYD,CsZEP,and CsNCED2)to facilitate carotenoid accumulation.Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53.We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53.Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling,thereby orchestrating citrus fruit coloration.Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops,the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches,further contributing to improving the quality of citrus and other carotenoid-rich crops.展开更多
Parameters of foam penetration in earth pressure balance(EPB)shield tunnelling,such as permeability coefficients and penetration distances,significantly impact tunnel face stability.However,existing studies have faced...Parameters of foam penetration in earth pressure balance(EPB)shield tunnelling,such as permeability coefficients and penetration distances,significantly impact tunnel face stability.However,existing studies have faced inaccuracies in analysing these parameters due to imitations in experimental methods.This study addresses this issue by employing enhanced methods for a more precise analysis of foam penetration.Experiments involving three distinct sand types(coarse,medium,and fine)and three foam expansion ratios(FER)(10,15,and 20)are conducted using a modified model test setup.Benefiting from a novel computer vision-based method,the model test outcomes unveil two distinct foam penetration paths:liquid migration(L_(w))and bubble migration(L_(f)).Three penetration phases-namely,injection,blockage&drainage,and breakage—are identified based on L_(w)and L_(f)variations.The initial"injection"phase conforms to Darcy’s law and is amenable to mathematical description.The foam with FER of 15 has the maximum viscosity and,hence the L_(f)and permeability in the penetration tests with FER of 15 are the lowest in the same sand.The bubble size distribution of foam with different FER shows minor differences.Nevertheless,the characteristics of foam penetration vary due to the distinct particle size distribution(PSD)of different sands.Foam penetration creates low-permeability layers in both medium and fine sands due to the larger bubble size of the foam compared to the estimated pore sizes of medium and fine sands.While the coarse sand results in a different situation due to its large pore size.The distinctive characteristics of foam penetration in different sand strata are notably shaped by FER,PSD,and pore size distributions.These insights shed light on the complex interactions during foam penetration at the tunnel face,contributing valuable knowledge to EPB shield tunnelling practices.展开更多
Carotenoids in plant foods provide health benefits by functioning as provitamin A.One ofthe vital provitamin A carotenoids,β-cryptoxanthin,is typically plentiful in citrus fruit.However,little is known about the gene...Carotenoids in plant foods provide health benefits by functioning as provitamin A.One ofthe vital provitamin A carotenoids,β-cryptoxanthin,is typically plentiful in citrus fruit.However,little is known about the genetic basis of β-cryptoxanthin accumulation in citrus.Here,we performed a widely targeted metabolomic analysis of 65 major carotenoids and carotenoid derivatives to characterize carotenoid accumulation in Citrus and determine the taxonomic profile of b-cryptoxanthin.We used data from 81 newly sequenced representative accessions and 69 previously sequenced Citrus cultivars to reveal the genetic basis of β-cryptoxanthin accumulation through a genome-wide association study.We identified a causal gene,CitCYP97B,which encodes a cytochrome P450 protein whose substrate and metabolic pathways in land plants were undetermined.We subsequently demonstrated that CitCYP97B functions as a novel monooxygenase that specifically hydroxylates the β-ring of β-cryptoxanthin in a heterologous expression system.In planta experiments provided further evidence that CitCYP97B negatively regulates b-cryptoxanthin content.Using the sequenced Citrus accessions,we found that two critical structural cis-element variations contribute to increased expression of CitCYP97B,thereby altering β-cryptoxanthin accumulation in fruit.Hybridization/introgression appear to have contributed to the prevalence of two cis-element variations in different Citrus types during citrus evolution.Overall,these findings extend our understanding of the regulation and diversity of carotenoid metabolism in fruit crops and provide a genetic target for production of β-cryptoxanthin-biofortified products.展开更多
Increasing the planting density can exacerbate crop competition for water,nutrients and space which results in a decline in the crop yields.However,the effect of increasing planting density on crop growth and soil bio...Increasing the planting density can exacerbate crop competition for water,nutrients and space which results in a decline in the crop yields.However,the effect of increasing planting density on crop growth and soil biological characteristics in barren sandy land in the semi-arid regions are still unclear.In this study,we investigated the effects of six planting densities(5.4×10^(4),6.45×10^(4),7.95×10^(4),9.5×10^(4),9.75×10^(4) and 10.5×10^(4) plants/hm^(2))on maize growth,photosynthesis characteristics,yield and soil biological characteristics in barren sandy soil in the semi-arid region of Ningxia,China.The results indicated that the stem diameter and spike length decreased linearly with increasing planting density.The plant height,spike weight,grain weight and 100-grain weight decreased with increasing plating density.Moreover,the root length increased with increasing planting density.The diameter,volume and activity increased and then decreased with increasing planting density.There was no significant difference(p>0.05)in the effect of planting density on transpiration rate intercellular CO_(2) concentration.As well,the soil microbial biomass carbon and microbial biomass nitrogen decreased with increasing planting density.The soil catalase activities increased and then decreased with increasing planting density.The alkaline phosphatase activity,the amounts of soil bacteria and actinomycetes increased with increasing planting density.Generally,a moderately increasing planting density can improve maize yield when water and nutrients are sufficient.The optimal planting density was 8.29×10^(4) plants/hm^(2) and the highest yield was 15.84 t/hm^(2) in barren sandy soil in semi-arid region of Ningxia,China.This study provides a theoretical basis for high yield and high efficiency of maize.展开更多
Roots are fundamental for plants to adapt to variable environmental conditions.The development of a robust root system is orchestrated by numerous genetic determinants and,among them,the MADS-box gene ANR1 has garnere...Roots are fundamental for plants to adapt to variable environmental conditions.The development of a robust root system is orchestrated by numerous genetic determinants and,among them,the MADS-box gene ANR1 has garnered substantial attention.Prior research has demonstrated that,in chrysanthemum,CmANR1positively regulates root system development.Nevertheless,the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified.In this study,we successfully identified bric-a-brac,tramtrack and broad(BTB)and transcription adapter putative zinc finger(TAZ)domain protein CmBT1 as the interacting partner of CmANR1 through a yeasttwo-hybrid(Y2H)screening library.Furthermore,we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays.Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum.In both in vitro and in vivo assays,it was evident that CmBT1mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway.This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2,which was crucial for root development in chrysanthemum.Genetic analysis suggested that CmBT1 modulated root development,at least in part,by regulating the level of CmANR1 protein.Collectively,these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination,thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.展开更多
Dear editor,Functional genomics studies of mosquito vectors are crucial for understanding their physiological behavior,pathogen transmission,and evolution,and for providing essential molecular targets for genetic cont...Dear editor,Functional genomics studies of mosquito vectors are crucial for understanding their physiological behavior,pathogen transmission,and evolution,and for providing essential molecular targets for genetic control(Severson&Behura,201l;Alphey,2014;Ruzzante et al.,2019;Hong et al.,2022).The main methods involve clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)gene editing via embryo microinjection(Criscione et al.,2015;Kistler et al.,2015).展开更多
基金supported by the National Key R&D Program of China(2021YFB2400300)Key R&D Program of Hubei Province of China(2020BAB088)+2 种基金National Natural Science Foundation of China(52002277)the Fundamental Research Funds for the Central Universities(2021GCRC001)Guangdong Basic and Applied Basic Reuter Foundation(2021A1515011748).
文摘The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate their useless components(mainly the degraded solid electrolyte interphase,SEI)and reconstruct their damaged structure.Herein,a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes.The regenerated graphite,which is revitalized by calcination treatment and acid leaching,delivers superb rate performance and a high specific capacity of 370 mAh g^(-1)(~99% of its theoretical capacity)after 100 cycles at 0.1 C,superior to the commercial graphite anodes.The improved electrochemical performance could be attributed to unchoked Li^(+) transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite.This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual“impurity”and provides a facile method for the efficient regeneration of graphite anodes.
基金National Natural Science Foundation of China,No.82170618.
文摘BACKGROUND Colorectal cancer is the third most prevalent malignancy globally and ranks second in cancer-related mortality,with the liver being the primary organ of metastasis.Preoperative chemotherapy is widely recommended for initially or potentially resectable colorectal liver metastases(CRLMs).Tumour pathological response serves as the most important and intuitive indicator for assessing the efficacy of chemotherapy.However,the postoperative pathological results reveal that a considerable number of patients exhibit a poor response to preoperative chemotherapy.Body mass index(BMI)is one of the factors affecting the tumori-genesis and progression of colorectal cancer as well as prognosis after various antitumour therapies.Several studies have indicated that overweight and obese patients with metastatic colorectal cancer experience worse prognoses than those with normal weight,particularly when receiving first-line chemotherapy regimens in combination with bevacizumab.AIM To explore the predictive value of BMI regarding the pathologic response following preoperative chemotherapy for CRLMs.METHODS A retrospective analysis was performed in 126 consecutive patients with CRLM who underwent hepatectomy following preoperative chemotherapy at four different hospitals from October 2019 to July 2023.Univariate and multivariate logistic regression models were applied to analyse potential predictors of tumour pathological response.The Kaplan-Meier method with log rank test was used to compare progression-free survival(PFS)between patients with high and low BMI.BMI<24.0 kg/m^(2) was defined as low BMI,and tumour regression grade 1-2 was defined as complete tumour response.RESULTS Low BMI was observed in 74(58.7%)patients and complete tumour response was found in 27(21.4%)patients.The rate of complete tumour response was significantly higher in patients with low BMI(29.7%vs 9.6%,P=0.007).Multivariate analysis revealed that low BMI[odds ratio(OR)=4.56,95%confidence interval(CI):1.42-14.63,P=0.011],targeted therapy with bevacizumab(OR=3.02,95%CI:1.10-8.33,P=0.033),preoperative carcinoembryonic antigen level<10 ng/mL(OR=3.84,95%CI:1.19-12.44,P=0.025)and severe sinusoidal dilatation(OR=0.17,95%CI:0.03-0.90,P=0.037)were independent predictive factors for complete tumour response.The low BMI group exhibited a significantly longer median PFS than the high BMI group(10.7 mo vs 4.7 mo,P=0.011).CONCLUSION In CRLM patients receiving preoperative chemotherapy,a low BMI may be associated with better tumour response and longer PFS.
基金supported by the National Natural Science Foundation of China(No.31930095,32172527)the Modern Agro-industry Technology Research System(CARS-26).
文摘Carotenoids directly influence citrus fruit color and nutritional value,which is critical to consumer acceptance.Elucidating the potential molecular mechanism underlying carotenoid metabolism is of great importance for improving fruit quality.Despite the well-established carotenoid biosynthetic pathways,the molecular regulatory mechanism underlying carotenoid metabolism remains poorly understood.Our previous studies have reported that the Myc-type basic helix-loop-helix(bHLH)transcription factor(TF)regulates citrus proanthocyanidin biosynthesis.Transgenic analyses further showed that overexpression of CsTT8 could significantly promote carotenoid accumulation in transgenic citrus calli,but its regulatory mechanism is still unclear.In the present study,we found that overexpression of CsTT8 enhances carotenoid content in citrus fruit and calli by increasing the expression of CsDXR,CsHDS,CsHDR,CsPDS,CsLCYE,CsZEP,and CsNCED2,which was accompanied by changes in the contents of abscisic acid and gibberellin.The in vitro and in vivo assays indicated that CsTT8 directly bound to the promoters of CsDXR,CsHDS,and CsHDR,the keymetabolic enzymes of the methylerythritol 4-phosphate(MEP)pathway,thus providing precursors for carotenoid biosynthesis and transcriptionally activating the expression of these three genes.In addition,CsTT8 activated the promoters of four key carotenoid biosynthesis pathway genes,CsPDS,CsLCYE,CsZEP,and CsNCED2,directly promoting carotenoid biosynthesis.This study reveals a novel network of carotenoid metabolism regulated by CsTT8.Our findings will contribute to manipulating carotenoid metabolic engineering to improve the quality of citrus fruit and other crops.
基金supported by the National Natural Science Foundation of China(No.31930095 and 32172527)the Modern Agro-industry Technology Research System(CARS-26).
文摘Abstract As an essential horticultural crop,Citrus has carotenoid diversity,which affects its aesthetic and nutritional values.β,β-Xanthophylls are the primary carotenoids accumulated in citrus fruits,and non-heme di-iron carotene hydroxylase(BCH)enzymes are mainly responsible forβ,β-xanthophyll synthesis.Previous studies have focused on the hydroxylation of BCH1,but the role of its paralogous gene in citrus,BCH2,remains largely unknown.In this study,we revealed theβ-hydroxylation activity of citrus BCH2(CsBCH2)for the first time through the functional complementation assay using Escherichia coli,although CsBCH2 exhibited a lower activity in hydroxylatingβ-carotene intoβ-cryptoxanthin than citrus BCH1(CsBCH1).Our results showed that overexpression of CsBCH2 in citrus callus increased xanthophyll proportion and plastoglobule size with feedback regulation of carotenogenic gene expression.This study revealed the distinct expression patterns and functional characteristics of two paralogous genes,CsBCH1 and CsBCH2,and illustrated the backup compensatory role of CsBCH2 for CsBCH1 in citrus xanthophyll biosynthesis.The independent function of CsBCH2 and its cooperative function with CsBCH1 inβ-cryptoxanthin biosynthesis suggested the potential of CsBCH2 to be employed for expanding the synthetic biology toolkit in carotenoid engineering。
文摘AIM: To investigate the feasibility of treatment for upper gastrointestinal fistula and leakage with personal stage nutrition support. METHODS: Forty-three patients with upper gastrointestinal fistula and leakage were randomly divided into two groups. Patients in group A were treated with personal stage nutrition support and patients in group B were treated with total parental nutrition (TPN) in combination with operation. Nutritional states of the candidates were evaluated by detecting albumin (AIb) and pre-AIb. The balance between nutrition and hepatic function was evaluated by measurement of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (Tbill) before and after operation. At the same time their complications and hospitalized time were surveyed. RESULTS: Personal stage nutrition support improved upper gastrointestinal fistula and leakage. The nutrition state and hepatic function were better in patients who received personal stage nutrition support than in those who did not receive TPN. There was no significant difference in the complication and hospitalized time in the two groups of patients. CONCLUSION: Upper gastrointestinal fistula and leakage can be treated with personal stage nutrition support which is more beneficial for the post-operation recovery and more economic than surgical operation.
基金Supported by Clinical New Technology and New Business Project (2021)School and Hospital of Stomatology of Wuhan University
文摘BACKGROUND In atrophic posterior mandibular areas,where the bone height superior to the inferior alveolar nerve(IAN)is less than 6 mm,short implants are not applicable.Conventional alternatives such as IAN transposition and various alveolar bone augmentation approaches are technically demanding and prone to complications.CASE SUMMARY Computer-guided dynamic navigation implantation improves the accuracy,predictability,and safety of implant placement.This case report presents a dynamic navigation system-guided trans-IAN implant placement technique,which can successfully treat a posterior mandibular dentition defect when the bone height is only 4.5 mm.The implant was inserted into the buccal side of the IAN and was 1.7 mm away from the IAN.The implantation deviations were controlled within a satisfying range,and the long-term restoration outcome was stable.CONCLUSION Dynamic navigation system-guided trans-IAN implant placement might be a recommended technique for patients with extremely insufficient residual bone height and sufficient bone width in the posterior mandibular area.
基金Grants-in-Aid for Scientific Research(Grant Nos.JP18H05205,JP17H01041,JP17H05245,and JP17H05459)We acknowledge the support from the Nanotechnology Platform(Hokkaido University)and Dynamic Alliance for Open Innovation Bridging Human,Environment and Materials(Five-Star Alliance)of MEXT.QSun also acknowledges the support from the National Natural Science Foundation of China(NSFC)(No.11527901).
文摘We studied the near-field properties of localized surface plasmon resonances in finite linear gold nanochains using photoemission electron microscopy(PEEM).The localization of the electromagnetic field in the near-field region was mapped at high spatial resolution.By tuning the excitation laser wavelength,we can obtain the near-field spectra,from which the energy splitting between longitudinal(L)and transverse(T)plasmon modes can be revealed.In particular,the L-mode red shifts and the T-mode blue shifts with increasing chain length.The red shift of the L-mode is highly dependent on the gap distance.In contrast,the T-mode almost remains constant within the range of gap distance we investigated.This energy splitting between the L-mode and the T-mode of metallic chains is in agreement with previous far-field measurements,where it was explained by dipole-dipole near-field coupling.Here,we provide direct proof of this near-field plasmon coupling in nanochains via the above-described near-field measurements using PEEM.In addition,we explore the energy transport along the gold nanochains under excitation at oblique illumination via PEEM measurements together with numerical simulations.
基金supported by the National Natural Science Foundation of China under Grant No. 51802225the funding from the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2020-001)。
文摘Lithium-selenium(Li-Se) battery is a promising system with high theoretical gravimetric and volumetric energy densities, while its long-term cyclability is hard to realize, especially when a practical Se cathode with high Se content, high Se loading, and high density is employed. The main obstacles are the sluggish conversion kinetics of the dense Se cathodes and the continuous deterioration of the Li-metal anodes.Here, by introducing an acetonitrile(AN)-based electrolyte and replacing the Li electrode with a lithiated graphite, we successfully build a hybrid conversion-intercalation system using a high-content(80 wt%),decent-loading(3.0 mg cm^(-2)), and low-porosity(44%) Se cathode. The as-designed lithiated graphite||Se(LG||Se) cell demonstrated a high Se utilization(97.4%), a long cycle life(3000 cycles), and an ultrahigh average Coulombic efficiency(99.98%). The cell also works well under lean-electrolyte(2 l L mg^(-1)) condition and shows outstanding safety performance in the nail-penetrating test. The combination affords the competitive comprehensive performances, including high volumetric and gravimetric energy densities, long cycling life, and superb safety of the LG||Se cell. In addition, with a newly-designed threeelectrode pouch cell, the lithiation of the graphite anodes could be done with an in-situ lithiation process,indicating the high potential of the as-proposed LG||Se cell for the practical applications.
基金supported by the National Natural Science Foundation of China(U1704104)the National Key Research and Development Program of China(2018YFD0100304,2016YFD0101902)。
文摘Cotton architecture is partly determined by shoot branching and flowering patterns.Gh BRC1 was previously identified by RNA-seq analysis of nulliplex-branching and normal-branching cotton.However,the roles of Gh BRC1 in cotton remain unclear.In the present study,investigations of nuclear localization and transcriptional activity indicated that Gh BRC1 has characteristics typical of transcription factors.Gene expression analysis showed that Gh BRC1 was highly expressed in axillary buds but displayed different expression patterns between the two branching types.Overexpression of Gh BRC1 in Arabidopsis significantly inhibited the number of branches and promoted flowering.In contrast,silencing Gh BRC1 in cotton significantly promoted seedling growth.Gh BRC1 was induced by multiple hormones,including strigolactones,which promoted seedling growth and seed germination of Arabidopsis plants overexpressing Gh BRC1.Consistent with these findings,RNA-seq analysis of virus-induced gene silencing treated cotton revealed that a large number of genes were differentially expressed between Gh BRC1-silenced and control plants,and these genes were significantly enriched in plant hormone signalling pathways.Together,our data indicates that Gh BRC1 regulates plant branching and flowering through multiple regulatory pathways,especially those regulating plant hormones,with functions partly differing from those of Arabidopsis BRC1.These results provide insights into the molecular mechanisms controlling plant architecture,which is important for breeding cotton with ideal plant architecture and high yield.
基金Natural Science Foundation of China projects(Nos.42074040,41941019,41731066,41790445)National Key R&D Program of China(Nos.2020YFC1512001,2019YFC1509800)China Geological Survey Project(No.DD20190647)。
文摘An increasing interest in the use of low frequency Synthetic Aperture Radar(SAR)systems,e.g.,L-and P-bands,makes the research of the ionospheric effects on SAR interferograms become urgent and significant.As the most pronounced signature in interferograms,the ionosphere-induced azimuth streak was thoroughly investigated in this study through processing of the 19 L-band Advanced Land-Observing Satellite(ALOS)Phased Array type L-band Synthetic Aperture Radar(PALSAR)images over the Chongqing City,China.The investigations show that the visible ionosphere-induced stripe-shape azimuth shifts with the invariable direction of 26°E,113°N are observed in some interferometric pairs.Relating these anomalous azimuth shifts to the International GNSS Service(IGS)final ionospheric products shows that the detected ionosphere-contaminated SAR images display the relatively large ionospheric variation with time during SAR satellite travelled through the study area,indicating a somewhat correlation between them.After detecting the ionosphere-contaminated interferograms,we estimated the Ionospheric Phase Streak(IPS)based on an approximate linear relationship between IPS and azimuth shift,and then removed them from the original interferograms.The corrected results show that ionospheric phase patterns are largely removed from the ionosphere-contaminated interferograms.The investigation indicates that the direction of the IPS keeps approximately constant in space and time,which provides the potential chance to develop methods to correct the ionospheric effect.Furthermore,this study once more proves that the ionospheric effect on SAR interferogram can be detected,estimated and corrected from azimuth shifts.
基金supported by the National Natural Science Foundationof China (60701006 60804054 71071158)
文摘Failure prediction plays an important role for many tasks such as optimal resource management in large-scale system. However, accurately failure number prediction of repairable large-scale long-running computing (RLLC) is a challenge because of the reparability and large-scale. To address the challenge, a general Bayesian serial revision prediction method based on Bootstrap approach and moving average approach is put forward, which can make an accurately prediction for the failure number. To demonstrate the performance gains of our method, extensive experiments on the data of Los Alamos National Laboratory (LANL) cluster is implemented, which is a typical RLLC system. And experimental results show that the prediction accuracy of our method is 80.2 %, and it is a greatly improvement with 4 % compared with some typical methods. Finally, the managerial implications of the models are discussed.
基金Supported by Key Projects of Tianjin Natural Science Foundation,No.19JCZDJC36100General Project of Natural Science Fund of Tianjin Education Commission,No.2018KJ047+1 种基金Subject in the Third Affiliated Central Hospital of Nankai University,No.2017YNY3Tianjin Key Special Projects,No.15KG115。
文摘Chemokine(C-X-C motif)receptor 7(CXCR7),recently termed ACKR3,belongs to the G protein-coupled cell surface receptor family,binds to stromal cellderived factor-1[SDF-1,or chemokine(C-X-C motif)ligand 12]or chemokine(CX-C motif)ligand 11,and is the most common chemokine receptor expressed in a variety of cancer cells.SDF-1 binds to its receptor chemokine(C-X-C motif)receptor 4(CXCR4)and regulates cell proliferation,survival,angiogenesis and migration.In recent years,another new receptor for SDF-1,CXCR7,has been discovered,and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells.Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells.Unlike CXCR4,CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca^2+release following ligand binding,which is essential for recruiting and activating G proteins.CXCR7 is generally thought to work in three ways:(1)Recruitingβ-arrestin 2;(2)Heterodimerizing with CXCR4;and(3)Acting as a“scavenger”of SDF-1,thus lowering the level of SDF-1 to weaken the activity of CXCR4.In the present review,the expression and role of CXCR7,as well as its prognosis in cancers of the digestive system,were investigated.
基金Natural Science Foundation of China and Daqing Oil Field,No. 498894190-4
文摘It is important to understand the distribution of sedimentary facies, especially the distribution of sand body that is the key for oil production and exploration. The secondary oil recovery requires analyzing a great deal of data acc-umulated within decades of oil field development. At many cases sedimentary micro-facies maps need to be reconstru-cted and redrawn frequently, which is time-consuming and heavy. This paper presents an integrated approach for determi-ning the distribution of sedimentary micro-facies, tracing the micro-facies boundary, and drawing the map of sedimentary micro-facies belts automatically by computer technique. The approach is based on the division and correlation of strata of multiple wells as well as analysis of sedimentary facies. The approach includes transform, gridding, interpolation, sup-erposing, searching boundary and drawing the map of sedimentary facies belts, and employs the spatial interpolation me-thod and "worm"interpolation method to determine the distribution of sedimentary micro-facies including sand ribbon and/or sand blanket. The computer software developed on the basis of the above principle provides a tool for quick visu-alization and understanding the distribution of sedimentary micro-facies and reservoir. Satisfied results have been achieve-ed by applying the technique to the Putaohua Oil Field in Songliao Basin, China.
基金National Key R&D Program of China(2023YFD2300600)National Natural Science Foundation of China(no.31930095)National Modern Agricultural(Citrus)Technology Systems of China(no.CARS-27).
文摘Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear.Here,we identified two master regulators of ABA-mediated citrus fruit coloration,CsERF110 and CsERF53,which activate the expression of carotenoid metabolism genes(CsGGPPS,CsPSY,CsPDS,CsCRTISO,CsLCYB2,CsLCYE,CsHYD,CsZEP,and CsNCED2)to facilitate carotenoid accumulation.Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53.We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53.Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling,thereby orchestrating citrus fruit coloration.Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops,the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches,further contributing to improving the quality of citrus and other carotenoid-rich crops.
基金funded by the Guangdong Provincial Department of Science and Technology(Grant No.2022A0505030019)the Science and Technology Development Fund,Macao,China(File/Project Nos.0056/2023/RIB2 and SKL-IOTSC(UM)-2021-2023)the National Natural Science Foundation of China(Grant No.52022001).
文摘Parameters of foam penetration in earth pressure balance(EPB)shield tunnelling,such as permeability coefficients and penetration distances,significantly impact tunnel face stability.However,existing studies have faced inaccuracies in analysing these parameters due to imitations in experimental methods.This study addresses this issue by employing enhanced methods for a more precise analysis of foam penetration.Experiments involving three distinct sand types(coarse,medium,and fine)and three foam expansion ratios(FER)(10,15,and 20)are conducted using a modified model test setup.Benefiting from a novel computer vision-based method,the model test outcomes unveil two distinct foam penetration paths:liquid migration(L_(w))and bubble migration(L_(f)).Three penetration phases-namely,injection,blockage&drainage,and breakage—are identified based on L_(w)and L_(f)variations.The initial"injection"phase conforms to Darcy’s law and is amenable to mathematical description.The foam with FER of 15 has the maximum viscosity and,hence the L_(f)and permeability in the penetration tests with FER of 15 are the lowest in the same sand.The bubble size distribution of foam with different FER shows minor differences.Nevertheless,the characteristics of foam penetration vary due to the distinct particle size distribution(PSD)of different sands.Foam penetration creates low-permeability layers in both medium and fine sands due to the larger bubble size of the foam compared to the estimated pore sizes of medium and fine sands.While the coarse sand results in a different situation due to its large pore size.The distinctive characteristics of foam penetration in different sand strata are notably shaped by FER,PSD,and pore size distributions.These insights shed light on the complex interactions during foam penetration at the tunnel face,contributing valuable knowledge to EPB shield tunnelling practices.
基金supported by the National Key Research and Develop-ment Program of China(2022YFF1003100)the National Natural Science Foundation of China(31930095)Modern Agro-industry Technology Research System(CARS-26).
文摘Carotenoids in plant foods provide health benefits by functioning as provitamin A.One ofthe vital provitamin A carotenoids,β-cryptoxanthin,is typically plentiful in citrus fruit.However,little is known about the genetic basis of β-cryptoxanthin accumulation in citrus.Here,we performed a widely targeted metabolomic analysis of 65 major carotenoids and carotenoid derivatives to characterize carotenoid accumulation in Citrus and determine the taxonomic profile of b-cryptoxanthin.We used data from 81 newly sequenced representative accessions and 69 previously sequenced Citrus cultivars to reveal the genetic basis of β-cryptoxanthin accumulation through a genome-wide association study.We identified a causal gene,CitCYP97B,which encodes a cytochrome P450 protein whose substrate and metabolic pathways in land plants were undetermined.We subsequently demonstrated that CitCYP97B functions as a novel monooxygenase that specifically hydroxylates the β-ring of β-cryptoxanthin in a heterologous expression system.In planta experiments provided further evidence that CitCYP97B negatively regulates b-cryptoxanthin content.Using the sequenced Citrus accessions,we found that two critical structural cis-element variations contribute to increased expression of CitCYP97B,thereby altering β-cryptoxanthin accumulation in fruit.Hybridization/introgression appear to have contributed to the prevalence of two cis-element variations in different Citrus types during citrus evolution.Overall,these findings extend our understanding of the regulation and diversity of carotenoid metabolism in fruit crops and provide a genetic target for production of β-cryptoxanthin-biofortified products.
基金supported by the China Ningxia Key Research and Development Project(Grant No.2022BEG02004).
文摘Increasing the planting density can exacerbate crop competition for water,nutrients and space which results in a decline in the crop yields.However,the effect of increasing planting density on crop growth and soil biological characteristics in barren sandy land in the semi-arid regions are still unclear.In this study,we investigated the effects of six planting densities(5.4×10^(4),6.45×10^(4),7.95×10^(4),9.5×10^(4),9.75×10^(4) and 10.5×10^(4) plants/hm^(2))on maize growth,photosynthesis characteristics,yield and soil biological characteristics in barren sandy soil in the semi-arid region of Ningxia,China.The results indicated that the stem diameter and spike length decreased linearly with increasing planting density.The plant height,spike weight,grain weight and 100-grain weight decreased with increasing plating density.Moreover,the root length increased with increasing planting density.The diameter,volume and activity increased and then decreased with increasing planting density.There was no significant difference(p>0.05)in the effect of planting density on transpiration rate intercellular CO_(2) concentration.As well,the soil microbial biomass carbon and microbial biomass nitrogen decreased with increasing planting density.The soil catalase activities increased and then decreased with increasing planting density.The alkaline phosphatase activity,the amounts of soil bacteria and actinomycetes increased with increasing planting density.Generally,a moderately increasing planting density can improve maize yield when water and nutrients are sufficient.The optimal planting density was 8.29×10^(4) plants/hm^(2) and the highest yield was 15.84 t/hm^(2) in barren sandy soil in semi-arid region of Ningxia,China.This study provides a theoretical basis for high yield and high efficiency of maize.
基金supported by grants from the National Natural Science Foundation of China(31902049)the National Natural Science Foundation of China(32122080)Shandong Province(ZR2020YQ25)。
文摘Roots are fundamental for plants to adapt to variable environmental conditions.The development of a robust root system is orchestrated by numerous genetic determinants and,among them,the MADS-box gene ANR1 has garnered substantial attention.Prior research has demonstrated that,in chrysanthemum,CmANR1positively regulates root system development.Nevertheless,the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified.In this study,we successfully identified bric-a-brac,tramtrack and broad(BTB)and transcription adapter putative zinc finger(TAZ)domain protein CmBT1 as the interacting partner of CmANR1 through a yeasttwo-hybrid(Y2H)screening library.Furthermore,we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays.Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum.In both in vitro and in vivo assays,it was evident that CmBT1mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway.This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2,which was crucial for root development in chrysanthemum.Genetic analysis suggested that CmBT1 modulated root development,at least in part,by regulating the level of CmANR1 protein.Collectively,these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination,thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.
基金This work was supported by the National Natural Science Foundation of China(Nos.31772527,31872262)the Natural Science Foundation Project of Chongqing(No.CSTB2022NSCQ-MSX1355)+3 种基金the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJZDK202200507,KJQN202200533)the BAYU scholar program(YS2019027)the Venture and Innovation Support Program for Chongqing Overseas Returnees(No.cx2022052)the Graduate Research and Innovation Foundation of Chongqing under Grant(CYS23399).
文摘Dear editor,Functional genomics studies of mosquito vectors are crucial for understanding their physiological behavior,pathogen transmission,and evolution,and for providing essential molecular targets for genetic control(Severson&Behura,201l;Alphey,2014;Ruzzante et al.,2019;Hong et al.,2022).The main methods involve clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)gene editing via embryo microinjection(Criscione et al.,2015;Kistler et al.,2015).