This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation ...This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.展开更多
In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in...In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in IPCC (Intergovernmental Panel on Climate Change) AR4. The precipitation extremes were calculated and analyzed by ETCCDI (Climate Change Detection and Indices). The results show that: (1) In Present Scenario (1961 1900), PRECIS could capture the spatial pattern of precipitation in Xinjiang. (2) The simulated annual precipitation and seasonal precipitation in Xinjiang had a significantly positive trend and its variability had been deeply impacted by terrain. There was a strong association between increasing trend and the extreme precipitation's increase in frequency and intensity during 1961-2008. Under SRES A2 and B2, extreme precipitation indicated an increasing tendency at the end of the 21st century. The extreme summer pre- cipitation increased prominently in a year. (3) PREC1S's simulation under SRES A2 and B2 indicated increased frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21 st century. Both A2 and B2 scenarios show similar patterns of projected changes in precipitation extremes towards the end of the 21st century. However, the magnitude of changes in B2 scenario was on the lower side. In case of extreme precipitation, variation between models can exceed both internal variability and variability of different SRES.展开更多
Climate change is one of the focuses to mitigate greenhouse effect and reduce carbon dioxide emissions.First,the paper summarizes on the carbon dioxide emission factors and methods suitable to the situation in China.S...Climate change is one of the focuses to mitigate greenhouse effect and reduce carbon dioxide emissions.First,the paper summarizes on the carbon dioxide emission factors and methods suitable to the situation in China.Second,it analyzes the primary energy-related carbon dioxide emissions during the period between 1995 and 2005 from different fossil fuels and different zones.The trend of primary energy-related carbon dioxide emissions from 1995 to 2005 is"first decreasing and later increasing."Seven regions-Liaoning,Shanxi,Hebei,Shandong,Henan,and Jiangsu-and most of the provinces(cities or regions)were found to have similar trends regarding total carbon dioxide emissions in China.The annual carbon dioxide emissions and the growth ratio of these seven regions are much higher compared to those of the other 24 provinces(cities or regions).Finally,this paper puts forward some suggestions to reduce carbon dioxide.展开更多
In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temp...In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temperature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re- gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Nino Southem Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.展开更多
Global warming has greatly concerned the whole world.Owing to the limitation we currently have,it is still difficult to completely understand the mechanism and physical science of climate change.Now both certainty and...Global warming has greatly concerned the whole world.Owing to the limitation we currently have,it is still difficult to completely understand the mechanism and physical science of climate change.Now both certainty and uncertainty coexist in the understanding of climate warming.This paper aims to summarize certainties and uncertainties in climate-warming studies,which focus on seven key problems related to human activities,namely,global warming,atmospheric concentrations of greenhouse gases,relationship between greenhouse gas emissions and climate warming,climate models,future climate change,2?warming threshold and tipping point in the Earth's system.We should comprehensively take into account the level of certainty and uncertainty in our understanding of climate change while adapting to and mitigating global warming and adjusting our industrial structures accordingly.This would allow us to respond to change with certainty,while avoiding the risks associated with uncertainty.展开更多
We extracted 374 pieces of records of frost date from historical documents. Using these records, we reconstructed winter half-year (October to next April) temperature series, with a resolution of 5-year, for the North...We extracted 374 pieces of records of frost date from historical documents. Using these records, we reconstructed winter half-year (October to next April) temperature series, with a resolution of 5-year, for the North China Plain during 1651-2010. The results show that the temperature changes in the North China Plain were divided into four phases. With the reference period of 1951-1980, two cold phases, 1651-1700 and 1781-1900, have cold anomaly of 0.83°C and 0.60°C respectively. However, between the two cold phases, 1701-1780 was a relative warm phase with the cold anomaly of 0.36°C referring to the mean of 1951-1980. After the 1900, the climate came into a warm phase. The mean temperature of 1901-2010 was 0.11°C higher than the mean of 1951-1980. During 1651-2010, the 1996-2000 is the warmest 5-year with the warm anomaly of 1.25°C than that of the reference period of 1951-1980.展开更多
This study innovatively evaluated ecological civilization in China from the perspective of environment and health.A Composite Environmental Health Index(CEHI)was constructed based on the Driving force-Pressure-State-I...This study innovatively evaluated ecological civilization in China from the perspective of environment and health.A Composite Environmental Health Index(CEHI)was constructed based on the Driving force-Pressure-State-Impact-Response(DPSIR)and Coupling Coordination Degree(CCD)models.Results showed that significant and sustained improvements were observed in the ecological environment after ecological civilization,while economic development continued to progress at a steady pace.However,the advancement in population health(impact subsystem),exhibited comparatively modest progress,potentially linked to issues such as demographic aging and the enduring consequences of past exposure to environmental pollutants.At the provincial level,the regional development was uneven.The CEHI performance was highest in the eastern regions,followed by the central regions,with the western regions showing the least progress.Beijing,Guangdong,Jiangsu,Shanghai,and Zhejiang emerged as top performers with higher CEHI scores,which can be attributed to their favorable geographical positioning and the response subsystem.Conversely,northeastern regions(Heilongjiang,Jilin,and Liaoning)and northwestern regions(Shaanxi,Gansu,Ningxia,and Qinghai)experienced limited advancements in post-ecological civilization implementation.For these underperforming regions,there is a pressing need to intensify efforts aimed at enhancing their response subsystems.In summary,China's pursuit of ecological civilization has yielded significant successes,potentially offering valuable insights for other nations striving for sustainable development.The ecological civilization model's integration of ecological environmental protection into economic,political,cultural,and social constructs may serve as a meaningful reference for the sustainable development of other countries.展开更多
Phenology is a reliable biological indicator for reflecting climate change. An examination of changes in crop phenology and the mechanisms driving them is critical for guiding regional agricultural activities in attem...Phenology is a reliable biological indicator for reflecting climate change. An examination of changes in crop phenology and the mechanisms driving them is critical for guiding regional agricultural activities in attempts to adapt to climate change. Due to a lack of records based on continuous long-term observation, studies on changes in multiple consecutive phenological stages throughout a whole growing season on a national scale are rarely found, especially with regard to the spatiotemporal differentiation of phenological changes. Using a long-term dataset(1981-2010) of wheat phenology collected from 48 agro-meteorological stations in China, we qualified the spatiotemporal changes of 10 phenological stages as well as the length of wheat growth phases. Results showed that climate and wheat phenology changed significantly during the growing seasons from 1981 to 2010. On average, on a national scale, dates of sowing(0.19 d a-1), emergence(0.06 d a-1), trefoil(0.05 d a-1), and milk ripe(0.06 d a-1) showed a delaying trend, whereas dates of tillering(-0.02 d a-1), jointing(-0.15 d a-1),booting(-0.21 d a-1), heading(-0.17 d a-1), anthesis(-0.19 d a-1), and maturity(-0.10 d a-1) showed an advancing trend.Furthermore, the vegetative growth phase and growing season were shortened by 0.23 and 0.29 d a-1, respectively, whereas the reproductive growth phase was lengthened by 0.06 d a-1. Trends in dates of phenological stages or length of growing phases varied across wheat-planting regions. Moreover, spatiotemporal differentiation of sensitivity in growing season length(GSL) to variations in climatic factors during the growing season between spring and winter wheat were remarkable. The GSL of spring(winter) wheat decreased(increased) with an increase in average temperature during the growing season. In all wheat-planting regions, the GSL increased with the increasing of total precipitation and sunshine duration during the growing season. In particular, the sensitivity of GSL to precipitation for spring wheat was weaker than for winter wheat, while the sensitivity of GSL to sunshine duration for spring wheat was stronger than for winter wheat. Recognition of the spatiotemporal differentiation of phenological changes and their response to various climatic factors will provide scientific support for decision-making in agricultural production.展开更多
This case study of the Hexi Corridor, Northwestern China, utilizes statistical methods to estimate quantitatively the interaction at a regional level between climate change, ancient social developments, and political ...This case study of the Hexi Corridor, Northwestern China, utilizes statistical methods to estimate quantitatively the interaction at a regional level between climate change, ancient social developments, and political coping strategies over the past 2000 years. The data is sourced from high-resolution reconstructions of climate series(temperature and precipitation), and historical records of cultivated land, war, population, and changes in regional administrative systems. The results show that moisture conditions played a more significant role than temperature in driving land reclamation in the Hexi Corridor. Analysis also showed a negative correlation between war frequency and the area of cultivated land in the Corridor over 20-year time intervals. Population growth was found to have a significant positive correlation with the cultivated land area during the study period. The results indicate that a climate-induced decline in agricultural production and the subsequent fluctuations in population could act as a trigger for social unrest, which is especially true at the mutual decadal time-scales. However, the interaction with administrative reform also suggests that, in the face of social and economic turmoil, a reasonable administrative hierarchy could strengthen the social governance of regional government, and promote social stability and economic development at a regional level. The study substantiates this notion with empirical quantitative evidence.展开更多
China is a traditional agriculture based country and one main region for crop production is southeastern China where temperature is a dominant climate variable affecting agriculture. Temperature and social disturbance...China is a traditional agriculture based country and one main region for crop production is southeastern China where temperature is a dominant climate variable affecting agriculture. Temperature and social disturbances both influence crop production, yet distinguishing their relative impacts is difficult due to a lack of reliable, high-resolution historical climatic records before the very recent period. Here we present the first tree-ring based warm-season temperature reconstruction for southeastern China, a core region of the East Asian monsoon, for the past 227 years. The reconstruction target was April-July mean temperature, and our model explained 60.6% of the observed temperature variance during 1953–2012.Spatial correlation analysis showed that the reconstruction is representative of April-July temperature change over most of eastern China. The reconstructed temperature series agrees well with China-scale(heavily weighted in eastern China) agricultural production index values quite well at decadal timescales.The impacts of social upheavals on food production, such as those in the period 1920–1949, were confirmed after climatic influences were excluded. Our study should help distinguish the influence of social disturbance and warm-season temperature on grain productivity in the core agricultural region of China during the past two centuries.展开更多
Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736-2000, dry-wet index data for A.D. 500-2000, and a 1000-yr control simulation using the Community Earth System Mode...Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736-2000, dry-wet index data for A.D. 500-2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastem China is stud- ied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22-24 and quasi-70 yr over the North China Plain; 32-36, 44-48, and quasi-70 yr in the Jiang-Huai area; and 32-36 and 4448 yr in the Jiang-Nan area. Bandpass decomposition from observation, reconstruction, and simulation re- veals that the variability of summer precipitation over the North China Plain, Jiang-Huai area, and Jiang-Nan area, at scales of 20-35, 35-50, and 50-80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang-Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data-model comparison sug- gests that these decadal oscillations and their temporal evolution over eastem China, including the decadal shifts in the spatial pattem of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA050800)the Key Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-TZ-G10)the National Natural Science Foundation of China (Grant No.41671201 and 91525101)
文摘This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.
基金funded by Henan Province Office of education of Humanities and social science research projects (2014-qn-151)the "Western Light" Project (RCPY200902) of the Chinese Academy of Sciences+3 种基金the special scientific research project (GYHY200706008)the project of National Social Science Foundation (14CJY077)Science and Technology Department of Henan Province key scientific and technological project (142102310299)the National Natural Science Foundation (41171066) of Xinjiang Institute of Ecology and Geography
文摘In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in IPCC (Intergovernmental Panel on Climate Change) AR4. The precipitation extremes were calculated and analyzed by ETCCDI (Climate Change Detection and Indices). The results show that: (1) In Present Scenario (1961 1900), PRECIS could capture the spatial pattern of precipitation in Xinjiang. (2) The simulated annual precipitation and seasonal precipitation in Xinjiang had a significantly positive trend and its variability had been deeply impacted by terrain. There was a strong association between increasing trend and the extreme precipitation's increase in frequency and intensity during 1961-2008. Under SRES A2 and B2, extreme precipitation indicated an increasing tendency at the end of the 21st century. The extreme summer pre- cipitation increased prominently in a year. (3) PREC1S's simulation under SRES A2 and B2 indicated increased frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21 st century. Both A2 and B2 scenarios show similar patterns of projected changes in precipitation extremes towards the end of the 21st century. However, the magnitude of changes in B2 scenario was on the lower side. In case of extreme precipitation, variation between models can exceed both internal variability and variability of different SRES.
基金supported by the Minisitry of Land and Resources'Public Benefit Research Foundation[grant number 201311127]
文摘Climate change is one of the focuses to mitigate greenhouse effect and reduce carbon dioxide emissions.First,the paper summarizes on the carbon dioxide emission factors and methods suitable to the situation in China.Second,it analyzes the primary energy-related carbon dioxide emissions during the period between 1995 and 2005 from different fossil fuels and different zones.The trend of primary energy-related carbon dioxide emissions from 1995 to 2005 is"first decreasing and later increasing."Seven regions-Liaoning,Shanxi,Hebei,Shandong,Henan,and Jiangsu-and most of the provinces(cities or regions)were found to have similar trends regarding total carbon dioxide emissions in China.The annual carbon dioxide emissions and the growth ratio of these seven regions are much higher compared to those of the other 24 provinces(cities or regions).Finally,this paper puts forward some suggestions to reduce carbon dioxide.
基金support of the National Natural Science Foundation of China (Grant No. 41201200)the CAS Strategic Priority Research Program (Grant No. XDA05080101)
文摘In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temperature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re- gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Nino Southem Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.
基金the National Natural Science Foundation of China[41101083]
文摘Global warming has greatly concerned the whole world.Owing to the limitation we currently have,it is still difficult to completely understand the mechanism and physical science of climate change.Now both certainty and uncertainty coexist in the understanding of climate warming.This paper aims to summarize certainties and uncertainties in climate-warming studies,which focus on seven key problems related to human activities,namely,global warming,atmospheric concentrations of greenhouse gases,relationship between greenhouse gas emissions and climate warming,climate models,future climate change,2?warming threshold and tipping point in the Earth's system.We should comprehensively take into account the level of certainty and uncertainty in our understanding of climate change while adapting to and mitigating global warming and adjusting our industrial structures accordingly.This would allow us to respond to change with certainty,while avoiding the risks associated with uncertainty.
文摘We extracted 374 pieces of records of frost date from historical documents. Using these records, we reconstructed winter half-year (October to next April) temperature series, with a resolution of 5-year, for the North China Plain during 1651-2010. The results show that the temperature changes in the North China Plain were divided into four phases. With the reference period of 1951-1980, two cold phases, 1651-1700 and 1781-1900, have cold anomaly of 0.83°C and 0.60°C respectively. However, between the two cold phases, 1701-1780 was a relative warm phase with the cold anomaly of 0.36°C referring to the mean of 1951-1980. After the 1900, the climate came into a warm phase. The mean temperature of 1901-2010 was 0.11°C higher than the mean of 1951-1980. During 1651-2010, the 1996-2000 is the warmest 5-year with the warm anomaly of 1.25°C than that of the reference period of 1951-1980.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA23100400).
文摘This study innovatively evaluated ecological civilization in China from the perspective of environment and health.A Composite Environmental Health Index(CEHI)was constructed based on the Driving force-Pressure-State-Impact-Response(DPSIR)and Coupling Coordination Degree(CCD)models.Results showed that significant and sustained improvements were observed in the ecological environment after ecological civilization,while economic development continued to progress at a steady pace.However,the advancement in population health(impact subsystem),exhibited comparatively modest progress,potentially linked to issues such as demographic aging and the enduring consequences of past exposure to environmental pollutants.At the provincial level,the regional development was uneven.The CEHI performance was highest in the eastern regions,followed by the central regions,with the western regions showing the least progress.Beijing,Guangdong,Jiangsu,Shanghai,and Zhejiang emerged as top performers with higher CEHI scores,which can be attributed to their favorable geographical positioning and the response subsystem.Conversely,northeastern regions(Heilongjiang,Jilin,and Liaoning)and northwestern regions(Shaanxi,Gansu,Ningxia,and Qinghai)experienced limited advancements in post-ecological civilization implementation.For these underperforming regions,there is a pressing need to intensify efforts aimed at enhancing their response subsystems.In summary,China's pursuit of ecological civilization has yielded significant successes,potentially offering valuable insights for other nations striving for sustainable development.The ecological civilization model's integration of ecological environmental protection into economic,political,cultural,and social constructs may serve as a meaningful reference for the sustainable development of other countries.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41671037 & 41301091)the National Key Research and Development Program of China (Grant No. 2016YFA0602402)the Youth Innovation Promotion Association, CAS (Grant No. 2016049)
文摘Phenology is a reliable biological indicator for reflecting climate change. An examination of changes in crop phenology and the mechanisms driving them is critical for guiding regional agricultural activities in attempts to adapt to climate change. Due to a lack of records based on continuous long-term observation, studies on changes in multiple consecutive phenological stages throughout a whole growing season on a national scale are rarely found, especially with regard to the spatiotemporal differentiation of phenological changes. Using a long-term dataset(1981-2010) of wheat phenology collected from 48 agro-meteorological stations in China, we qualified the spatiotemporal changes of 10 phenological stages as well as the length of wheat growth phases. Results showed that climate and wheat phenology changed significantly during the growing seasons from 1981 to 2010. On average, on a national scale, dates of sowing(0.19 d a-1), emergence(0.06 d a-1), trefoil(0.05 d a-1), and milk ripe(0.06 d a-1) showed a delaying trend, whereas dates of tillering(-0.02 d a-1), jointing(-0.15 d a-1),booting(-0.21 d a-1), heading(-0.17 d a-1), anthesis(-0.19 d a-1), and maturity(-0.10 d a-1) showed an advancing trend.Furthermore, the vegetative growth phase and growing season were shortened by 0.23 and 0.29 d a-1, respectively, whereas the reproductive growth phase was lengthened by 0.06 d a-1. Trends in dates of phenological stages or length of growing phases varied across wheat-planting regions. Moreover, spatiotemporal differentiation of sensitivity in growing season length(GSL) to variations in climatic factors during the growing season between spring and winter wheat were remarkable. The GSL of spring(winter) wheat decreased(increased) with an increase in average temperature during the growing season. In all wheat-planting regions, the GSL increased with the increasing of total precipitation and sunshine duration during the growing season. In particular, the sensitivity of GSL to precipitation for spring wheat was weaker than for winter wheat, while the sensitivity of GSL to sunshine duration for spring wheat was stronger than for winter wheat. Recognition of the spatiotemporal differentiation of phenological changes and their response to various climatic factors will provide scientific support for decision-making in agricultural production.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19040101)the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-ZS-2016-6 and KGFZD-135-17-009-1)
文摘This case study of the Hexi Corridor, Northwestern China, utilizes statistical methods to estimate quantitatively the interaction at a regional level between climate change, ancient social developments, and political coping strategies over the past 2000 years. The data is sourced from high-resolution reconstructions of climate series(temperature and precipitation), and historical records of cultivated land, war, population, and changes in regional administrative systems. The results show that moisture conditions played a more significant role than temperature in driving land reclamation in the Hexi Corridor. Analysis also showed a negative correlation between war frequency and the area of cultivated land in the Corridor over 20-year time intervals. Population growth was found to have a significant positive correlation with the cultivated land area during the study period. The results indicate that a climate-induced decline in agricultural production and the subsequent fluctuations in population could act as a trigger for social unrest, which is especially true at the mutual decadal time-scales. However, the interaction with administrative reform also suggests that, in the face of social and economic turmoil, a reasonable administrative hierarchy could strengthen the social governance of regional government, and promote social stability and economic development at a regional level. The study substantiates this notion with empirical quantitative evidence.
基金supported by National Natural Science Foundation of China Project (41271210)the National Key R&D Program of China (2016YFA0600503)+3 种基金the Fundamental Research Funds for the Central Universities (20620140083)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Jiangsu Collaborative Innovation Center for Climate ChangeUNESCO CHINA-4500193250
文摘China is a traditional agriculture based country and one main region for crop production is southeastern China where temperature is a dominant climate variable affecting agriculture. Temperature and social disturbances both influence crop production, yet distinguishing their relative impacts is difficult due to a lack of reliable, high-resolution historical climatic records before the very recent period. Here we present the first tree-ring based warm-season temperature reconstruction for southeastern China, a core region of the East Asian monsoon, for the past 227 years. The reconstruction target was April-July mean temperature, and our model explained 60.6% of the observed temperature variance during 1953–2012.Spatial correlation analysis showed that the reconstruction is representative of April-July temperature change over most of eastern China. The reconstructed temperature series agrees well with China-scale(heavily weighted in eastern China) agricultural production index values quite well at decadal timescales.The impacts of social upheavals on food production, such as those in the period 1920–1949, were confirmed after climatic influences were excluded. Our study should help distinguish the influence of social disturbance and warm-season temperature on grain productivity in the core agricultural region of China during the past two centuries.
基金Supported by the National Natural Science Foundation of China(41430528 and 41471171)Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(TSYJS04,2014RC101,and 2015RC101)
文摘Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736-2000, dry-wet index data for A.D. 500-2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastem China is stud- ied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22-24 and quasi-70 yr over the North China Plain; 32-36, 44-48, and quasi-70 yr in the Jiang-Huai area; and 32-36 and 4448 yr in the Jiang-Nan area. Bandpass decomposition from observation, reconstruction, and simulation re- veals that the variability of summer precipitation over the North China Plain, Jiang-Huai area, and Jiang-Nan area, at scales of 20-35, 35-50, and 50-80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang-Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data-model comparison sug- gests that these decadal oscillations and their temporal evolution over eastem China, including the decadal shifts in the spatial pattem of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.