Silver(Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices.The target application and the performanc...Silver(Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices.The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire(0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles(between 2 and 20 nm),irregular nanoclusters(between 30 and 60 nm), and nanocluster networks(between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting,surface diffusion, Volmer–Weber growth model, coalescence,and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature(750 ℃) due to the sublimation and temperature-dependent characteristic of dewetting process.In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.展开更多
The interlayer coupling in van der Waals(vdW)crystals has substantial effects on the performance of materials.However,an indepth understanding of the microscopic mechanism on the defect-modulated interlayer coupling i...The interlayer coupling in van der Waals(vdW)crystals has substantial effects on the performance of materials.However,an indepth understanding of the microscopic mechanism on the defect-modulated interlayer coupling is often elusive,owing partly to the challenge of atomic-scale characterization.Here we report the native Se-vacancies in a charge-density-wave metal 2HNbSe2,as well as their influence on the local atomic configurations and interlayer coupling.Our low-temperature scanning tunneling microscopy(STM)measurements,complemented by density functional theory calculations,indicate that the Sevacancies in few-layer NbSe2 can generate obvious atomic distortions due to the Jahn-Teller effect,thus breaking the rotational symmetry on the nanoscale.Moreover,these vacancies can locally generate an in-gap state in single-layer NbSe2,and more importantly,lead to a colossal suppression of interlayer coupling in the bilayer system.Our results provide clear structural and electronic fingerprints around the vacancies in vdW crystals,paving the way for developing functional vdW devices.展开更多
基金the National Research Foundation of Korea(no.2011-0030079 and 2016R1A1A1A05005009)the research grant of Kwangwoon University in 2016
文摘Silver(Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices.The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire(0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles(between 2 and 20 nm),irregular nanoclusters(between 30 and 60 nm), and nanocluster networks(between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting,surface diffusion, Volmer–Weber growth model, coalescence,and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature(750 ℃) due to the sublimation and temperature-dependent characteristic of dewetting process.In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.
基金supported by National Natural Science Foundation of China(Nos.92163206,61725107,12274026,61971035,62271048,11934003,21961132023,and U1930402)National Key Research and Development Program Program of China(Nos.2020YFA0308800,2021YFA1400100,2022YFA1402502,and 2022YFA1402602)+1 种基金Beijing Natural Science Foundation(No.Z190006)China Postdoctoral Science Foundation(No.2021M700407),Villum Fonden(No.00013340),and the Danish Research Foundation(No.DNRF103)。
文摘The interlayer coupling in van der Waals(vdW)crystals has substantial effects on the performance of materials.However,an indepth understanding of the microscopic mechanism on the defect-modulated interlayer coupling is often elusive,owing partly to the challenge of atomic-scale characterization.Here we report the native Se-vacancies in a charge-density-wave metal 2HNbSe2,as well as their influence on the local atomic configurations and interlayer coupling.Our low-temperature scanning tunneling microscopy(STM)measurements,complemented by density functional theory calculations,indicate that the Sevacancies in few-layer NbSe2 can generate obvious atomic distortions due to the Jahn-Teller effect,thus breaking the rotational symmetry on the nanoscale.Moreover,these vacancies can locally generate an in-gap state in single-layer NbSe2,and more importantly,lead to a colossal suppression of interlayer coupling in the bilayer system.Our results provide clear structural and electronic fingerprints around the vacancies in vdW crystals,paving the way for developing functional vdW devices.