期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向创新能力培养的微处理器与系统设计课程教学改革与实践
1
作者 范赐恩 陈罡 +1 位作者 茹国宝 朱劼 《中国现代教育装备》 2024年第21期118-121,共4页
当前,企业对微处理器设计与开发人才的需求强盛,而高校培养的人才对解决企业项目实际需求的系统设计和开发能力不足。从分析微处理器类课程的理论和实践教学现状出发,提出了面向创新能力培养的微处理器与系统设计课程改革方向。构建了... 当前,企业对微处理器设计与开发人才的需求强盛,而高校培养的人才对解决企业项目实际需求的系统设计和开发能力不足。从分析微处理器类课程的理论和实践教学现状出发,提出了面向创新能力培养的微处理器与系统设计课程改革方向。构建了基于项目实例的理论知识体系,组织了基于任务驱动的阶梯式实践教学内容,同时教学形式采用第一课堂和第二课堂、常规讲授和项目式研讨、线上和线下混合式教学相结合等多种方式。实践证明,课程教学改革有助于学生创新能力的培养。 展开更多
关键词 创新能力培养 任务式驱动 项目式研讨
下载PDF
Influence of CNN Structure Parameters on Blind Equalization of Shortwave Channels
2
作者 LIU Qi SUN Wenqiang +1 位作者 ru guobao GAN Liangcai 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第1期102-106,共5页
Aiming at the severe inter-symbol interference and high bit error rate in short-wave fast time-varying channels,this paper designs a short-wave channel blind equalizer based on Convolution Neural Network(CNN),and anal... Aiming at the severe inter-symbol interference and high bit error rate in short-wave fast time-varying channels,this paper designs a short-wave channel blind equalizer based on Convolution Neural Network(CNN),and analyzes the influence of parameters in CNN structure on channel equalization,such as the number of convolution layers,the depth of convolution layer and the size of the convolution kernel layer.By simulating two typical short-wave time-varying channel,Rayleigh flat fading and frequency selective fading channels,we have the following results:1)Compared with the Recurrent Neural Network(RNN)structure equalizer,the CNN has higher accuracy during the training process,the convergence speed is faster,and the stability after convergence is higher.2)Under the condition of simulation,the CNN-based short-wave channel blind equalizer designed in this paper can effectively extract input signal when using 2×3×3 convolution kernel size and 2-layer convolutional layer.The characteristics of the classification layer improve the equalization performance while reducing the complexity of CNN structure.3)For the short-wave channel,the error rate of Convolution Neural Network Equalizer(CNNE)is lower than that of Recurrent Neural Network Equalizer(RNNE)under the same SNR. 展开更多
关键词 channel equalization short-wave fast time-varying channel Convolution Neural Network(CNN)
原文传递
一种结合上下文与边缘注意力的SAR图像海陆分割深度网络方法 被引量:2
3
作者 梁烽 张瑞祥 +3 位作者 柴英特 陈金勇 茹国宝 杨文 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2023年第8期1286-1295,共10页
海陆分割对于合成孔径雷达(synthetic aperture radar,SAR)图像海洋目标检测、海岸线提取等任务具有重要意义。针对实际应用中多分辨率SAR图像海陆分割难题,提出了一种基于上下文与边缘注意力的海陆分割方法。该方法利用通道注意力机制... 海陆分割对于合成孔径雷达(synthetic aperture radar,SAR)图像海洋目标检测、海岸线提取等任务具有重要意义。针对实际应用中多分辨率SAR图像海陆分割难题,提出了一种基于上下文与边缘注意力的海陆分割方法。该方法利用通道注意力机制融合不同尺度和层次的上下文特征,设计了边缘提取支路提供边缘信息,进一步提高了海陆边界的分割准确率。同时,构建了基于高分三号卫星数据的多分辨率SAR图像海陆分割数据集,该数据集涵盖了多个分辨率,包括港口、岛屿等多种海陆边界类型。并基于所构建的多分辨率SAR图像海陆分割数据集,对所提网络的有效性和各模块的作用进行了实验分析。实验结果表明,所提网络的整体预测准确率和平均交并比分别达到了98.21%和96.47%,能够较好地完成海陆分割任务。 展开更多
关键词 合成孔径雷达 海陆分割 边缘提取 注意力机制
原文传递
Low Complexity MMSE-SQRD Signal Detection Based on Iteration
4
作者 WU Di ru guobao +2 位作者 GAN Liangcai YU Xuechun LIU Qi 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第5期431-434,共4页
Aiming at the problem of high computational complexity of Vertical-BLAST(V-BLAST) algorithm in Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM) system signal detection, this paper f... Aiming at the problem of high computational complexity of Vertical-BLAST(V-BLAST) algorithm in Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM) system signal detection, this paper first uses Sorted QR Decomposition(SQRD) iterative operation instead of matrix inversion to reduce the computational complexity of the algorithm, and then considering that the algorithm is greatly affected by noise, Minimum Mean Square Error(MMSE) criterion is used to weaken the noise effect. At the same time, in order to reduce the noise and computational complexity, MMSE and SQRD are combined, which can not only reduce the noise and computational complexity, but also obtain the sub-optimal detection order, thus improving the detection performance of the MIMO-OFDM system. Finally, the numerical simulation of the MMSE-SQRD detection algorithm is carried out. The results show that the Eb/No of MMSE-SQRD algorithm is 2 dB greater than that of the MMSE algorithm and the computational complexity is O(NT3) under the conditions that NT =NR=2 and the BER is 10–2. The detection algorithm satisfies the demand of short wave and wideband wireless communication. 展开更多
关键词 MULTIPLE-INPUT Multiple-Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Minimum Mean Square Error (MMSE) Sorting Orthogonal-Triangular Decoding (SQRD) ALGORITHM the MMSE-SQRD ALGORITHM
原文传递
Blind Adaptive Multiuser Detection Based on FIAPI Algorithm
5
作者 XIAO Wenshuai ru guobao GAN Liangcai 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第1期59-64,共6页
Multiuser detection technology is currently one of the effective ways to suppress multiple access interference and near-far effects. Firstly, through selecting a simple compensation matrix, fast improved approximation... Multiuser detection technology is currently one of the effective ways to suppress multiple access interference and near-far effects. Firstly, through selecting a simple compensation matrix, fast improved approximation power iteration(FIAPI) subspace tracking optimization algorithm is proposed. Secondly, for the disadvantage of high computational complexity of Kalman filtering algorithm, Kalman for blind adaptive multiuser detector based on FIAPI subspace tracking algorithm is designed. The simulation experiments show that the convergence and anti-interference ability of the blind adaptive multiuser detector based on FIAPI algorithm is greatly improved, and the average signal-to-interference ratio of the FAPI algorithm is improved by about 0.7 dB, which is higher than the average signal-to-interference ratio of the orthogonal projection approximation subspace tracking(OPAST) algorithm 2 dB or so. 展开更多
关键词 fast improved APPROXIMATE power iteration(FIAPI) KALMAN filtering MULTIUSER detection SUBSPACE tracking
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部