V-Mo-P oxide catalyst system was directly prepared from ll-molybdo-l-vanado phosphoric acid by thermal decomposition. Supported V-Mo-P oxide catalysts were prepared by wet impregnation method. Catalysts were character...V-Mo-P oxide catalyst system was directly prepared from ll-molybdo-l-vanado phosphoric acid by thermal decomposition. Supported V-Mo-P oxide catalysts were prepared by wet impregnation method. Catalysts were characterized by FTIR (Fourier transform infrared), XRD (X-ray diffraction) and TPD (temperature programmed desorption). The catalytic activity of V-Mo-P oxide catalysts were investigated for vapour phase ammoxidation of 3-picoline. The unsupported catalyst showed 92.1% yield where as V-Mo-P oxide/HZSM-5 showed the highest yield (80.4%) amongst the supported catalysts.展开更多
In India coal combustion is the single largest source of emission of mercury which is a widespread persistent global toxicant,travelling across international borders through air and water.As a party to the Minamata co...In India coal combustion is the single largest source of emission of mercury which is a widespread persistent global toxicant,travelling across international borders through air and water.As a party to the Minamata convention,India aims to monitor and reduce Hg emissions and stricter norms are introduced for mercury emissions from power plants(30μg/Nm 3 for flue gas in stack).This paper presents the results obtained during the experimental studies performed on mercury emissions at four coal-fired and one lignite-fired power plants in India.The mercury concentration in the feed coal varied between 0.12-0.27 mg/Kg.In the mercury mass balance,significant proportion of feed coal mercury has been found to be associated with fly ash,whereas bottom ash contained very low mercury.80%-90%of mercury was released to air through stack gas.However,for circulating fluidised bed boiler burning lignite,about 64.8%of feed mercury was found to get captured in the fly ash and only 32.4%was released to air.The mercury emission factor was found to lie in the range of 4.7-15.7 mg/GJ.展开更多
文摘V-Mo-P oxide catalyst system was directly prepared from ll-molybdo-l-vanado phosphoric acid by thermal decomposition. Supported V-Mo-P oxide catalysts were prepared by wet impregnation method. Catalysts were characterized by FTIR (Fourier transform infrared), XRD (X-ray diffraction) and TPD (temperature programmed desorption). The catalytic activity of V-Mo-P oxide catalysts were investigated for vapour phase ammoxidation of 3-picoline. The unsupported catalyst showed 92.1% yield where as V-Mo-P oxide/HZSM-5 showed the highest yield (80.4%) amongst the supported catalysts.
文摘In India coal combustion is the single largest source of emission of mercury which is a widespread persistent global toxicant,travelling across international borders through air and water.As a party to the Minamata convention,India aims to monitor and reduce Hg emissions and stricter norms are introduced for mercury emissions from power plants(30μg/Nm 3 for flue gas in stack).This paper presents the results obtained during the experimental studies performed on mercury emissions at four coal-fired and one lignite-fired power plants in India.The mercury concentration in the feed coal varied between 0.12-0.27 mg/Kg.In the mercury mass balance,significant proportion of feed coal mercury has been found to be associated with fly ash,whereas bottom ash contained very low mercury.80%-90%of mercury was released to air through stack gas.However,for circulating fluidised bed boiler burning lignite,about 64.8%of feed mercury was found to get captured in the fly ash and only 32.4%was released to air.The mercury emission factor was found to lie in the range of 4.7-15.7 mg/GJ.