In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the ti...In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.展开更多
It is a well-established fact that wireless sensor networks (WSNs) are very power constraint networks, but besides this, they are inherently more fault-prone than any other type of wireless network and their protocol ...It is a well-established fact that wireless sensor networks (WSNs) are very power constraint networks, but besides this, they are inherently more fault-prone than any other type of wireless network and their protocol design is very application specific. Major reasons for the faults are the unpredictable wireless communication channel, battery depletion, as well as fragility and mobility of the nodes. Furthermore, as traditional protocol design methods have proved inadequate, the cross-layer design (CLD) approach, which allows for interactions between different layers, providing more flexible and energy-efficient functionality, has emerged as a viable solution for WSNs. In this study we define a fault tolerance management module suitable to the requirements, limitations, and specifics of WSNs, encompassing methods for fault detection, fault prevention, fault management, and recovery. The suggested solution is in line with the CLD approach, which is an important factor in increasing the network performance. Through simulations the functionality of the network is evaluated, based on packet loss, delay, and energy consumption, and is compared with a similar solution not including fault management. The results achieved support the idea that the introduction of a unified approach to fault management improves the network performance as a whole.展开更多
文摘In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.
文摘It is a well-established fact that wireless sensor networks (WSNs) are very power constraint networks, but besides this, they are inherently more fault-prone than any other type of wireless network and their protocol design is very application specific. Major reasons for the faults are the unpredictable wireless communication channel, battery depletion, as well as fragility and mobility of the nodes. Furthermore, as traditional protocol design methods have proved inadequate, the cross-layer design (CLD) approach, which allows for interactions between different layers, providing more flexible and energy-efficient functionality, has emerged as a viable solution for WSNs. In this study we define a fault tolerance management module suitable to the requirements, limitations, and specifics of WSNs, encompassing methods for fault detection, fault prevention, fault management, and recovery. The suggested solution is in line with the CLD approach, which is an important factor in increasing the network performance. Through simulations the functionality of the network is evaluated, based on packet loss, delay, and energy consumption, and is compared with a similar solution not including fault management. The results achieved support the idea that the introduction of a unified approach to fault management improves the network performance as a whole.